Vol. 116
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-03-27
High-Sensitivity Temperature Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 116, 11-21, 2023
Abstract
A high-sensitivity photonic crystal fiber (PCF) Temperature sensor based on surface plasmon resonance (SPR) with a high figure of merit (FOM) is proposed. Compared with most optical fiber inner air holes coated with metal or placed with metal nanowires, owing to the plasma material directly contacting the analyte, the annular channel outside the cladding is convenient for analyte detection, and the sensor is easier to manufacture. The temperature-sensitive liquid is a mixed solution of ethanol and chloroform with a volume ratio of 1:1. The results indicate that the highest sensitivity of this sensor can reach 15.4 nm/˚C, and the maximum FOM is 0.2829/˚C between -10˚C and 60˚C. Furthermore, the influence of photonic crystal fiber air hole size, gold film thickness, and other parameters on the performance of the sensor is analyzed.
Citation
Hai Ping Li, Juan Ruan, Xin Li, Guangyong Wei, and Tao He, "High-Sensitivity Temperature Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 116, 11-21, 2023.
doi:10.2528/PIERM22112903
References

1. Politano, A., G. D. Profio, V. Sanna, and E. Curcio, "Thermoplasmonic membrane distillation," Chemical Engineering Transactions, Vol. 60, 301-306, 2017.

2. Santoro, S., A. H. Avci, A. Politano, and E. Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C

3. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming the temperature polarization in membrane distillation by thermoplasmonic effects activated in Ag nanofillers in polymeric membranes," Desalination, 192-199, 2019.
doi:10.1016/j.desal.2018.03.006

4. Abramovich, S., D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, and A. Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2022.
doi:10.1002/smll.202201473

5. Leonardo, V., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, 1-10, 2016.

6. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nanoletters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901

7. Politano, A., G. Chiarello, D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics Condensed Matter, Vol. 28, No. 36, 2016.
doi:10.1088/0953-8984/28/36/363003

8. Adleman, J. R., D. A. Boyd, D. G. Goodwin, and D. Psaltis, "Heterogenous catalysis mediated by plasmon heating," Nano Letters, Vol. 9, No. 12, 4417-4423, 2009.
doi:10.1021/nl902711n

9. Liu, C., J. Lu, W. Liu, F. Wang, and P. K. Chu, "Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect," Chinese Optics Letters, Vol. 19, No. 10, 102202, 2021.
doi:10.3788/COL202119.102202

10. Perri, C., F. Arcadio, G. D'Agostino, N. Cennamo, G. Porto, and L. Zeni, "Chemical and biological applications based on plasmonic optical fiber sensors," IEEE Instrumentation & Measurement Magazine, Vol. 24, No. 5, 50-55, 2021.
doi:10.1109/MIM.2021.9491004

11. Chiarello, G., J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. D. Sarma, and A. Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, 121401, 2019.
doi:10.1103/PhysRevB.99.121401

12. Antonio, P., G. Chiarello, B. Ghosh, K. Sadhkhan, C.-N. Kuo, C. S. Lue, V. Pellegrini, and A. Agarwal, "3D Dirac plasmons in the type-II Dirac semimetal PtTe2," Physical Review Letters, Vol. 121, No. 8, 086804, 2018.
doi:10.1103/PhysRevLett.121.086804

13. Krishanu, S., A. Politano, and A. Agarwal, "Novel undamped gapless plasmon mode in a tilted type-ll Dirac semimetal," Physical Review Letters, Vol. 124, No. 4, 2020.

14. Antonio, P., L. Viti, and M. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 2017.

15. Amit, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K

16. Antonio, P. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, No. 20, 2013.

17. Cupolillo, A., A. Politano, N. Ligato, D. M. CidPerez, G. Chiarello, and L. S. Caputi, "Substrate-dependent plasmonic properties of supported graphene," Surface Science, 76-80, 2015.
doi:10.1016/j.susc.2014.11.002

18. Debasis, D., B. Ghosh, B. Singh, H. Lin, A. Politano, A. Bansil, and A. Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Physical Review B, Vol. 105, No. 16, 2022.

19. Antonio, P., V. M. Silkin, I. A. Nechaev, M. S. Vitiello, L. Viti, Z. S. Aliev, M. B. Babanly, G. Chiarello, P. M. Echenique, and E. V. Chulkov, "Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3," Physical Review Letters, Vol. 115, No. 21, 2015.
doi:10.1103/PhysRevLett.115.216804

20. Ali, S., A. Lauchner, S. Najmaei, C. A. Orozco, F. Wen, J. Lou, and N. Halas, "Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells," Applied Physics Letters, Vol. 104, No. 3, 2014.

21. West, P. R., S. Lshii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, No. 6, 795-808, 2010.
doi:10.1002/lpor.200900055

22. Jorgenson, R. C. and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, Vol. 12, No. 3, 213-220, 1993.
doi:10.1016/0925-4005(93)80021-3

23. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

24. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

25. Otupiri, R., E. K. Akowuah, and S. Haxha, "Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications," Optics Express, Vol. 23, No. 12, 15716, 2015.
doi:10.1364/OE.23.015716

26. Xue, J., S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, "Polarization filter characters of the gold-coated and the liquid-filled photonic crystal fiber based on surface plasmon resonance," Optics Express, Vol. 21, No. 11, 13733, 2013.
doi:10.1364/OE.21.013733

27. Li, X.-G., Y. Zhao, X. Zhou, and L. Cai, "High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber," Instrumentation Science & Technology, Vol. 46, No. 3, 253-264, 2017.
doi:10.1080/10739149.2017.1380038

28. Wang, S., Y. Lu, W. Ma, N. Liu, and S. Fan, "D-shaped surface plasmon photonic crystal fiber temperature sensor," Plasmonics, 1-9, 2022.

29. Han, Y., L. Gong, F. Meng, H. Chen, Y. Wang, Z. R. Li, F. D. Zhou, M. Yang, J. Z. Guan, W. Yun, X. J. Guo, and W. Wang, "Highly sensitive temperature sensor based on surface plasmon resonance in a liquid-filled hollow-core negative-curvature fiber," Optik, Vol. 241, 2021.

30. Rifat, A., G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, "Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core," Sensors, Vol. 15, No. 5, 11499-11510, 2015.
doi:10.3390/s150511499

31. Antonio, P. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Progress in Surface Science, Vol. 90, No. 2, 144-193, 2015.
doi:10.1016/j.progsurf.2014.12.002

32. Ghosh, G., M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," Journal of Lightwave Technology, Vol. 12, No. 8, 1338-1342, 1994.
doi:10.1109/50.317500

33. Vial, A., A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B, Vol. 71, No. 8, 2005.
doi:10.1103/PhysRevB.71.085416

34. Yan, X., R. Fu, T. Cheng, and S. Li, "A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range," Sensors, Vol. 21, 3782, 2021.
doi:10.3390/s21113782

35. Rifat, A. A., G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, "Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach," IEEE Photonics Technology Letters, Vol. 27, No. 15, 1628-1631, 2015.
doi:10.1109/LPT.2015.2432812

36. Danlard, I. and E. K. Akowuah, "Assaying with PCF-based SPR refractive index biosensors: From recent configurations to outstanding detection limits," Optical Fiber Technology, Vol. 54, 102083, 2020.
doi:10.1016/j.yofte.2019.102083

37. Lou, J., T. L. Cheng, S. G. Li, and X. N. Zhang, "Surface plasmon resonance photonic crystal fiber biosensor based on gold-graphene layers," Optical Fiber Technology, Vol. 50, 206-211, 2019.
doi:10.1016/j.yofte.2019.03.028

38. Reyes Vera, E., C. M. Cordeiro, and P. Torres, "Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal," Applied Optics, Vol. 56, No. 2, 156-162, 2017.
doi:10.1364/AO.56.000156

39. Liu, Q., S. G. Li, H. L. Chen, Z. K. Fan, and J. S. Li, "Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode," IEEE Photonics Journal, Vol. 7, No. 2, 1-9, 2015.

40. Mo, X., J. T. Lv, Q. Liu, X. X. Jiang, and G. Y. Si, "A magnetic field SPR sensor based on temperature self-reference," Sensors, Vol. 21, No. 18, 6130, 2021.
doi:10.3390/s21186130

41. Rifat, A. A., R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, "Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR," IEEE Sensors Journal, Vol. 17, No. 9, 2776-2783, 2017.
doi:10.1109/JSEN.2017.2677473