1. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nat. Biomed. Eng., Vol. 1, 0010, Jan. 2017.
doi:10.1038/s41551-016-0010
2. Zhang, F., V. Gradinaru, A. R. Adamantidis, et al. "Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures," Nat. Protoc., Vol. 5, No. 3, 439-456, Mar. 2010.
doi:10.1038/nprot.2009.226
3. Yun, S. H. and S. J. J. Kwok, "Light in diagnosis, therapy and surgery," Nat. Biomed. Eng., Vol. 1, 0008, 2017.
doi:10.1038/s41551-016-0008
4. Jiang, S., X. Wu, N. J. Rommelfanger, et al. "Shedding light on neurons: Optical approaches for neuromodulation," Natl. Sci. Rev., Vol. 9, nwac007, Jan. 18, 2022.
5. Kim, T.-I., J. G. McCall, Y. H. Jung, et al. "Injectable, cellular-scale optoelectronics with applications for wireless optogenetics," Science, Vol. 340, No. 6129, 211-216, 2013.
doi:10.1126/science.1232437
6. Chen, S., A. Z. Weitemier, X. Zeng, et al. "Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics," Science, Vol. 359, No. 6376, 679-684, Feb. 9, 2018.
doi:10.1126/science.aaq1144
7. Montgomery, K. L., A. J. Yeh, J. S. Ho, et al. "Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice," Nat. Methods, Vol. 12, No. 10, 969-974, Oct. 2015.
doi:10.1038/nmeth.3536
8. Ruan, H., J. Brake, J. E. Robinson, et al. "Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light," Sci. Adv., Vol. 3, No. 12, eaao5520, Dec. 2017.
doi:10.1126/sciadv.aao5520
9. Wu, X., X. Zhu, P. Chong, et al. "Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics," Proc. Natl. Acad. Sci. USA, Vol. 116, No. 52, 26332-26342, Dec. 6, 2019.
doi:10.1073/pnas.1914387116
10. Yang, F., X. Wu, H. Cui, et al. "A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source," Sci. Adv., Vol. 8, No. 30, eabo6743, Jul. 29, 2022.
doi:10.1126/sciadv.abo6743
11. Yang, F., X. Wu, H. Cui, et al. "Palette of rechargeable mechanoluminescent uids produced by a biomineral-inspired suppressed dissolution approach," J. Am. Chem. Soc., Vol. 144, No. 40, 18406-18418, Oct. 12, 2022.
doi:10.1021/jacs.2c06724
12. Wang, W., X. Wu, K. W. Kevin Tang, et al. "Ultrasound-triggered in situ photon emission for noninvasive optogenetics," J. Am. Chem. Soc., Vol. 145, No. 2, 1097-1107, Jan. 18, 2023.
doi:10.1021/jacs.2c10666
13. Yang, F., S. J. Kim, X. Wu, et al. "Principles and applications of sono-optogenetics," Adv. Drug Deliv. Rev., Vol. 194, 114711, Jan. 25, 2023.
14. Zhang, J. C., X. S. Wang, G. Marriott, et al. "Trap-controlled mechanoluminescent materials," Prog. Mater. Sci., Vol. 103, 678-742, Jun. 2019.
doi:10.1016/j.pmatsci.2019.02.001
15. Zhuang, Y. and R. J. Xie, "Mechanoluminescence rebrightening the prospects of stress sensing: A review," Adv. Mater., Vol. 33, No. 50, e2005925, Dec. 2021.
doi:10.1002/adma.202005925
16. Li, Y., M. Gecevicius, and J. Qiu, "Long persistent phosphors --- From fundamentals to applications," Chem. Soc. Rev., Vol. 45, No. 8, 2090-2136, Apr. 21, 2016.
doi:10.1039/C5CS00582E
17. Huang, K., N. Le, J. S. Wang, et al. "Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles," Adv. Mater., Vol. 34, No. 14, e2107962, Apr. 2022.
doi:10.1002/adma.202107962
18. Yang, F., H. Cui, X. Wu, et al. "Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots," Nanoscale, Vol. 15, No. 4, 1629-1636, Jan. 27, 2023.
doi:10.1039/D2NR06129E
19. Maldiney, T., A. Bessiere, J. Seguin, et al. "The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells," Nat. Mater., Vol. 13, No. 4, 418-426, Apr. 2014.
doi:10.1038/nmat3908
20. Li, Z., Y. Zhang, X. Wu, et al. "Direct aqueous-phase synthesis of sub-10nm ``luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence," J. Am. Chem. Soc., Vol. 137, No. 16, 5304-5307, Apr. 29, 2015.
doi:10.1021/jacs.5b00872
21. Pei, P., Y. Chen, C. Sun, et al. "X-ray-activated persistent luminescence nanomaterials for NIR-II imaging," Nat. Nanotechnol., Vol. 16, No. 9, 1011-1018, Sep. 2021.
doi:10.1038/s41565-021-00922-3
22. Miao, Q., C. Xie, X. Zhen, et al. "Molecular afterglow imaging with bright, biodegradable polymer nanoparticles," Nat. Biotechnol., Vol. 35, No. 11, 1102-1110, Nov. 2017.
doi:10.1038/nbt.3987
23. Wu, X., Y. Jiang, N. J. Rommelfanger, et al. "Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window," Nat. Biomed. Eng., Vol. 6, No. 6, 754-770, Jun. 2022.
doi:10.1038/s41551-022-00862-w
24. Day, R. N. and M. W. Davidson, "The fluorescent protein palette: Tools for cellular imaging," Chem. Soc. Rev., Vol. 38, No. 10, 2887-2921, Oct. 2009.
doi:10.1039/b901966a
25. Fenno, L., O. Yizhar, and K. Deisseroth, "The development and application of optogenetics," Annu. Rev. Neurosci., Vol. 34, 389-412, 2011.
doi:10.1146/annurev-neuro-061010-113817
26. Zhou, X. X., X. Zou, H. K. Chung, et al. "A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription," ACS Chem. Biol., Vol. 13, No. 2, 443-448, Feb. 16, 2018.
doi:10.1021/acschembio.7b00603
27. Nihongaki, Y., F. Kawano, T. Nakajima, et al. "Photoactivatable CRISPR-Cas9 for optogenetic genome editing," Nat. Biotechnol., Vol. 33, No. 7, 755-760, Jul. 2015.
doi:10.1038/nbt.3245
28. Su, X. L., X. Y. Kong, K. S. Sun, et al. "Enhanced blue afterglow through molecular fusion for bio-applications," Angew. Chem. Int. Edit., Vol. 61, e202201630, Jul. 4, 2022.
29. Lawson, N. D. and B. M. Weinstein, "In vivo imaging of embryonic vascular development using transgenic zebrafish," Dev. Biol., Vol. 248, No. 2, 307-318, Aug. 15, 2002.
doi:10.1006/dbio.2002.0711
30. Kim, T. H. and M. J. Schnitzer, "Fluorescence imaging of large-scale neural ensemble dynamics," Cell, Vol. 185, No. 1, 9-41, Jan. 6, 2022.
doi:10.1016/j.cell.2021.12.007
31. Kim, S., T. Kyung, J. H. Chung, et al. "Non-invasive optical control of endogenous Ca(2+) channels in awake mice," Nat. Commun., Vol. 11, 210, Jan. 10, 2020.
doi:10.1038/s41467-019-14005-4
32. Xu, X., H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photonics, Vol. 5, No. 3, 154-157, Mar. 2011.
doi:10.1038/nphoton.2010.306
33. Hampson, K. M., R. Turcotte, D. T. Miller, et al. "Adaptive optics for high-resolution imaging," Nat. Rev. Methods Primers, Vol. 1, 68, 2021.
doi:10.1038/s43586-021-00066-7
34. Streich, L., J. C. Boffi, L. Wang, et al. "High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy," Nat. Methods, Vol. 18, No. 10, 1253-1258, Oct. 2021.
doi:10.1038/s41592-021-01257-6
35. Canales, A., S. Park, A. Kilias, et al. "Multifunctional fibers as tools for neuroscience and neuroengineering," Acc. Chem. Res., Vol. 51, No. 4, 829-838, Apr. 17, 2018.
doi:10.1021/acs.accounts.7b00558
36. Park, S. I., D. S. Brenner, G. Shin, et al. "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics," Nat. Biotechnol., Vol. 33, No. 12, 1280-1286, Dec. 2015.
doi:10.1038/nbt.3415
37. Gunaydin, L. A., L. Grosenick, J. C. Finkelstein, et al. "Natural neural projection dynamics underlying social behavior," Cell, Vol. 157, No. 7, 1535-1551, Jun. 19, 2014.
doi:10.1016/j.cell.2014.05.017
38. Salatino, J. W., K. A. Ludwig, T. D. Y. Kozai, et al. "Glial responses to implanted electrodes in the brain," Nat. Biomed. Eng., Vol. 1, No. 11, 862-877, Nov. 2017.
doi:10.1038/s41551-017-0154-1
39. Chen, Y., N. J. Rommelfanger, A. I. Mahdi, et al. "Low is flxible electronics advancing neuroscience research?," Biomaterials, Vol. 268, 120559, Jan. 2021.
doi:10.1016/j.biomaterials.2020.120559
40. Miyazaki, T., S. Chowdhury, T. Yamashita, et al. "Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles," Cell Rep., Vol. 26, No. 4, 1033-1043, Jan. 22, 2019.
doi:10.1016/j.celrep.2019.01.001
41. Pisanello, F., G. Mandelbaum, M. Pisanello, et al. "Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber," Nat. Neurosci., Vol. 20, No. 8, 1180-1188, Aug. 2017.
doi:10.1038/nn.4591
42. Mohanty, A., Q. Li, M. A. Tadayon, et al. "Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation," Nat. Biomed. Eng., Vol. 4, No. 2, 223-231, Feb. 2020.
doi:10.1038/s41551-020-0516-y
43. Speed, C. A., "Therapeutic ultrasound in soft tissue lesions," Rheumatology, Vol. 40, No. 12, 1331-1336, Dec. 2001.
doi:10.1093/rheumatology/40.12.1331
44. Pascoli, V., M. Turiault, and C. Luscher, "Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour," Nature, Vol. 481, No. 7379, 71-75, Dec. 7, 2011.
doi:10.1038/nature10709
45. Morikawa, K., K. Furuhashi, C. de Sena-Tomas, et al. "Photoactivatable Cre recombinase 3.0 for in vivo mouse applications," Nat. Commun., Vol. 11, 2141, May 1, 2020.
46. Lin, M. Z. and M. J. Schnitzer, "Genetically encoded indicators of neuronal activity," Nat. Neurosci., Vol. 19, No. 9, 1142-1153, Aug. 26, 2016.
doi:10.1038/nn.4359
47. Alter, K. E. and B. I. Karp, "Ultrasound guidance for botulinum neurotoxin chemodenervation procedures," Toxins, Vol. 10, No. 1, Dec. 28, 2017.
48. Zhong, Y., Z. Ma, F. Wang, et al. "In vivo molecular imaging for immunotherapy using ultra- bright near-infrared-IIb rare-earth nanoparticles," Nat. Biotechnol., Vol. 37, No. 11, 1322-1331, Nov. 2019.
doi:10.1038/s41587-019-0262-4