Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-04-04
Systemically Delivered, Deep-Tissue Nanoscopic Light Sources
By
Progress In Electromagnetics Research, Vol. 177, 33-42, 2023
Abstract
Light is widely used in life science in both controlling and observing biological processes, yet a long-standing challenge of using light inside the tissue lies in the limited penetration depth of visible light. In the past decade, many in vivo light delivery methods using photonics and materials science tools have been developed, with recent demonstrations of non-invasive, deep-tissue light sources based on systemically delivered luminescent nanomaterials. In this perspective, we provide an overview for the principles of intravital nanoscopic light sources and discuss their advantages over existing methods for in vivo light delivery. We then highlight their recent applications in optogenetics neuromodulation and fluorescent imaging in live animals. We also present an outlook section about the feasibility of combining these non-invasive light sources with other modalities to expand the utilities of light in biology.
Citation
Xiang Wu, Fan Yang, Sa Cai, and Guosong Hong, "Systemically Delivered, Deep-Tissue Nanoscopic Light Sources," Progress In Electromagnetics Research, Vol. 177, 33-42, 2023.
doi:10.2528/PIER22112703
References

1. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nat. Biomed. Eng., Vol. 1, 0010, Jan. 2017.
doi:10.1038/s41551-016-0010

2. Zhang, F., V. Gradinaru, A. R. Adamantidis, et al. "Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures," Nat. Protoc., Vol. 5, No. 3, 439-456, Mar. 2010.
doi:10.1038/nprot.2009.226

3. Yun, S. H. and S. J. J. Kwok, "Light in diagnosis, therapy and surgery," Nat. Biomed. Eng., Vol. 1, 0008, 2017.
doi:10.1038/s41551-016-0008

4. Jiang, S., X. Wu, N. J. Rommelfanger, et al. "Shedding light on neurons: Optical approaches for neuromodulation," Natl. Sci. Rev., Vol. 9, nwac007, Jan. 18, 2022.

5. Kim, T.-I., J. G. McCall, Y. H. Jung, et al. "Injectable, cellular-scale optoelectronics with applications for wireless optogenetics," Science, Vol. 340, No. 6129, 211-216, 2013.
doi:10.1126/science.1232437

6. Chen, S., A. Z. Weitemier, X. Zeng, et al. "Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics," Science, Vol. 359, No. 6376, 679-684, Feb. 9, 2018.
doi:10.1126/science.aaq1144

7. Montgomery, K. L., A. J. Yeh, J. S. Ho, et al. "Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice," Nat. Methods, Vol. 12, No. 10, 969-974, Oct. 2015.
doi:10.1038/nmeth.3536

8. Ruan, H., J. Brake, J. E. Robinson, et al. "Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light," Sci. Adv., Vol. 3, No. 12, eaao5520, Dec. 2017.
doi:10.1126/sciadv.aao5520

9. Wu, X., X. Zhu, P. Chong, et al. "Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics," Proc. Natl. Acad. Sci. USA, Vol. 116, No. 52, 26332-26342, Dec. 6, 2019.
doi:10.1073/pnas.1914387116

10. Yang, F., X. Wu, H. Cui, et al. "A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source," Sci. Adv., Vol. 8, No. 30, eabo6743, Jul. 29, 2022.
doi:10.1126/sciadv.abo6743

11. Yang, F., X. Wu, H. Cui, et al. "Palette of rechargeable mechanoluminescent uids produced by a biomineral-inspired suppressed dissolution approach," J. Am. Chem. Soc., Vol. 144, No. 40, 18406-18418, Oct. 12, 2022.
doi:10.1021/jacs.2c06724

12. Wang, W., X. Wu, K. W. Kevin Tang, et al. "Ultrasound-triggered in situ photon emission for noninvasive optogenetics," J. Am. Chem. Soc., Vol. 145, No. 2, 1097-1107, Jan. 18, 2023.
doi:10.1021/jacs.2c10666

13. Yang, F., S. J. Kim, X. Wu, et al. "Principles and applications of sono-optogenetics," Adv. Drug Deliv. Rev., Vol. 194, 114711, Jan. 25, 2023.

14. Zhang, J. C., X. S. Wang, G. Marriott, et al. "Trap-controlled mechanoluminescent materials," Prog. Mater. Sci., Vol. 103, 678-742, Jun. 2019.
doi:10.1016/j.pmatsci.2019.02.001

15. Zhuang, Y. and R. J. Xie, "Mechanoluminescence rebrightening the prospects of stress sensing: A review," Adv. Mater., Vol. 33, No. 50, e2005925, Dec. 2021.
doi:10.1002/adma.202005925

16. Li, Y., M. Gecevicius, and J. Qiu, "Long persistent phosphors --- From fundamentals to applications," Chem. Soc. Rev., Vol. 45, No. 8, 2090-2136, Apr. 21, 2016.
doi:10.1039/C5CS00582E

17. Huang, K., N. Le, J. S. Wang, et al. "Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles," Adv. Mater., Vol. 34, No. 14, e2107962, Apr. 2022.
doi:10.1002/adma.202107962

18. Yang, F., H. Cui, X. Wu, et al. "Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots," Nanoscale, Vol. 15, No. 4, 1629-1636, Jan. 27, 2023.
doi:10.1039/D2NR06129E

19. Maldiney, T., A. Bessiere, J. Seguin, et al. "The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells," Nat. Mater., Vol. 13, No. 4, 418-426, Apr. 2014.
doi:10.1038/nmat3908

20. Li, Z., Y. Zhang, X. Wu, et al. "Direct aqueous-phase synthesis of sub-10nm ``luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence," J. Am. Chem. Soc., Vol. 137, No. 16, 5304-5307, Apr. 29, 2015.
doi:10.1021/jacs.5b00872

21. Pei, P., Y. Chen, C. Sun, et al. "X-ray-activated persistent luminescence nanomaterials for NIR-II imaging," Nat. Nanotechnol., Vol. 16, No. 9, 1011-1018, Sep. 2021.
doi:10.1038/s41565-021-00922-3

22. Miao, Q., C. Xie, X. Zhen, et al. "Molecular afterglow imaging with bright, biodegradable polymer nanoparticles," Nat. Biotechnol., Vol. 35, No. 11, 1102-1110, Nov. 2017.
doi:10.1038/nbt.3987

23. Wu, X., Y. Jiang, N. J. Rommelfanger, et al. "Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window," Nat. Biomed. Eng., Vol. 6, No. 6, 754-770, Jun. 2022.
doi:10.1038/s41551-022-00862-w

24. Day, R. N. and M. W. Davidson, "The fluorescent protein palette: Tools for cellular imaging," Chem. Soc. Rev., Vol. 38, No. 10, 2887-2921, Oct. 2009.
doi:10.1039/b901966a

25. Fenno, L., O. Yizhar, and K. Deisseroth, "The development and application of optogenetics," Annu. Rev. Neurosci., Vol. 34, 389-412, 2011.
doi:10.1146/annurev-neuro-061010-113817

26. Zhou, X. X., X. Zou, H. K. Chung, et al. "A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription," ACS Chem. Biol., Vol. 13, No. 2, 443-448, Feb. 16, 2018.
doi:10.1021/acschembio.7b00603

27. Nihongaki, Y., F. Kawano, T. Nakajima, et al. "Photoactivatable CRISPR-Cas9 for optogenetic genome editing," Nat. Biotechnol., Vol. 33, No. 7, 755-760, Jul. 2015.
doi:10.1038/nbt.3245

28. Su, X. L., X. Y. Kong, K. S. Sun, et al. "Enhanced blue afterglow through molecular fusion for bio-applications," Angew. Chem. Int. Edit., Vol. 61, e202201630, Jul. 4, 2022.

29. Lawson, N. D. and B. M. Weinstein, "In vivo imaging of embryonic vascular development using transgenic zebrafish," Dev. Biol., Vol. 248, No. 2, 307-318, Aug. 15, 2002.
doi:10.1006/dbio.2002.0711

30. Kim, T. H. and M. J. Schnitzer, "Fluorescence imaging of large-scale neural ensemble dynamics," Cell, Vol. 185, No. 1, 9-41, Jan. 6, 2022.
doi:10.1016/j.cell.2021.12.007

31. Kim, S., T. Kyung, J. H. Chung, et al. "Non-invasive optical control of endogenous Ca(2+) channels in awake mice," Nat. Commun., Vol. 11, 210, Jan. 10, 2020.
doi:10.1038/s41467-019-14005-4

32. Xu, X., H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photonics, Vol. 5, No. 3, 154-157, Mar. 2011.
doi:10.1038/nphoton.2010.306

33. Hampson, K. M., R. Turcotte, D. T. Miller, et al. "Adaptive optics for high-resolution imaging," Nat. Rev. Methods Primers, Vol. 1, 68, 2021.
doi:10.1038/s43586-021-00066-7

34. Streich, L., J. C. Boffi, L. Wang, et al. "High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy," Nat. Methods, Vol. 18, No. 10, 1253-1258, Oct. 2021.
doi:10.1038/s41592-021-01257-6

35. Canales, A., S. Park, A. Kilias, et al. "Multifunctional fibers as tools for neuroscience and neuroengineering," Acc. Chem. Res., Vol. 51, No. 4, 829-838, Apr. 17, 2018.
doi:10.1021/acs.accounts.7b00558

36. Park, S. I., D. S. Brenner, G. Shin, et al. "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics," Nat. Biotechnol., Vol. 33, No. 12, 1280-1286, Dec. 2015.
doi:10.1038/nbt.3415

37. Gunaydin, L. A., L. Grosenick, J. C. Finkelstein, et al. "Natural neural projection dynamics underlying social behavior," Cell, Vol. 157, No. 7, 1535-1551, Jun. 19, 2014.
doi:10.1016/j.cell.2014.05.017

38. Salatino, J. W., K. A. Ludwig, T. D. Y. Kozai, et al. "Glial responses to implanted electrodes in the brain," Nat. Biomed. Eng., Vol. 1, No. 11, 862-877, Nov. 2017.
doi:10.1038/s41551-017-0154-1

39. Chen, Y., N. J. Rommelfanger, A. I. Mahdi, et al. "Low is flxible electronics advancing neuroscience research?," Biomaterials, Vol. 268, 120559, Jan. 2021.
doi:10.1016/j.biomaterials.2020.120559

40. Miyazaki, T., S. Chowdhury, T. Yamashita, et al. "Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles," Cell Rep., Vol. 26, No. 4, 1033-1043, Jan. 22, 2019.
doi:10.1016/j.celrep.2019.01.001

41. Pisanello, F., G. Mandelbaum, M. Pisanello, et al. "Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber," Nat. Neurosci., Vol. 20, No. 8, 1180-1188, Aug. 2017.
doi:10.1038/nn.4591

42. Mohanty, A., Q. Li, M. A. Tadayon, et al. "Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation," Nat. Biomed. Eng., Vol. 4, No. 2, 223-231, Feb. 2020.
doi:10.1038/s41551-020-0516-y

43. Speed, C. A., "Therapeutic ultrasound in soft tissue lesions," Rheumatology, Vol. 40, No. 12, 1331-1336, Dec. 2001.
doi:10.1093/rheumatology/40.12.1331

44. Pascoli, V., M. Turiault, and C. Luscher, "Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour," Nature, Vol. 481, No. 7379, 71-75, Dec. 7, 2011.
doi:10.1038/nature10709

45. Morikawa, K., K. Furuhashi, C. de Sena-Tomas, et al. "Photoactivatable Cre recombinase 3.0 for in vivo mouse applications," Nat. Commun., Vol. 11, 2141, May 1, 2020.

46. Lin, M. Z. and M. J. Schnitzer, "Genetically encoded indicators of neuronal activity," Nat. Neurosci., Vol. 19, No. 9, 1142-1153, Aug. 26, 2016.
doi:10.1038/nn.4359

47. Alter, K. E. and B. I. Karp, "Ultrasound guidance for botulinum neurotoxin chemodenervation procedures," Toxins, Vol. 10, No. 1, Dec. 28, 2017.

48. Zhong, Y., Z. Ma, F. Wang, et al. "In vivo molecular imaging for immunotherapy using ultra- bright near-infrared-IIb rare-earth nanoparticles," Nat. Biotechnol., Vol. 37, No. 11, 1322-1331, Nov. 2019.
doi:10.1038/s41587-019-0262-4