Vol. 101
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-07-25
Soil Water Content Estimation Over Plantation Area Using FMCW Radar
By
Progress In Electromagnetics Research B, Vol. 101, 155-173, 2023
Abstract
In plantation areas, soil conditions affect the crop's quality. One of the crucial elements in the soil for plant survival is soil water content (SWC). Radar system has advantages that can be implemented for measuring SWC in plantation areas. A radar system operates by utilizing electromagnetic waves to obtain the dielectric characteristics of the soil. However, the presence of tea plants has become an obstacle to the radar wave propagation toward the soil layer. Reflected signal, which is influenced by the presence of vegetation, makes the estimation of SWC inaccurate. Consequently, the estimation of SWC needs to consider the vegetation's effect. This study uses an FMCW radar system, which operates at a frequency of 24 GHz. A layer medium propagation model is proposed in this study to prove the relationship between the reflected signal and the SWC. The reflection coefficient extracted from the radar signal is used to estimate the SWC. The vegetation propagation constant was obtained from the average field measurement results. The gravimetric method is used to validate the SWC estimation in vegetation's presence using the radar system. The results of the field experiments showed that the proposed method succeeded in estimating the SWC by considering the presence of vegetation with an average error of 3.57%. The proposed method has the potential to be applied to plantation areas.
Citation
Fildha Ridhia, Aloysius Adya Pramudita, and Fiky Yosef Suratman, "Soil Water Content Estimation Over Plantation Area Using FMCW Radar," Progress In Electromagnetics Research B, Vol. 101, 155-173, 2023.
doi:10.2528/PIERB22112501
References

1. Passioura, J. B., "Soil conditions and plant growth," Plant, Cell and Environment, Vol. 25, No. 2, 311-318, 2002.
doi:10.1046/j.0016-8025.2001.00802.x

2. Loynachan, T. E., K. W. Brown, T. H. Cooper, M. H. Milford, et al. "Sustaining our soils and society," American Geological Institute, 1999.

3. Leopold, A. C. and P. E. Kriedemann, Plant Growth and Development, Tata McGraw-Hill, 1975.

4. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone Journal, Vol. 2, No. 4, 476-491, 2003.

5. Lal, R. and M. Shukla, Soil Water Evaporation, Marcel Dekker Inc., 2004.

6. Pramudita, A. and L. Sari, "Extraction model of soil water content information based on least square method for GPR," 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-5, IEEE, 2016.

7. You, K. Y., J. Salleh, Z. Abbas, and L. You, "A rectangular patch antenna technique for the determination of moisture content in soil," PIERS Online, 850-854, 2010.

8. Ghazali, M. F., K. Wikantika, A. B. Harto, and A. Kondoh, "Generating soil salinity, soil moisture, soil ph from satellite imagery and its analysis," Information Processing in Agriculture, Vol. 7, No. 2, 294-306, 2020.
doi:10.1016/j.inpa.2019.08.003

9. Zhao, T., L. Hu, J. Shi, H. Lu, S. Li, D. Fan, P. Wang, D. Geng, C. S. Kang, and Z. Zhang, "Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations," Remote Sensing of Environment, Vol. 248, 111958, 2020.
doi:10.1016/j.rse.2020.111958

10. Qiu, J., W. T. Crow, W. Wagner, and T. Zhao, "Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing," International Journal of Applied Earth Observation and Geoinformation, Vol. 80, 47-57, 2019.
doi:10.1016/j.jag.2019.03.015

11. Leao, T. P., B. F. D. da Costa, V. B. Bufon, and F. F. H. Aragon, "Using time domain reflectometry to estimate water content of three soil orders under savanna in brazil," Geoderma Regional, Vol. 21, e00280, 2020.
doi:10.1016/j.geodrs.2020.e00280

12. Robinet, J., C. von Hebel, G. Govers, J. van der Kruk, J. P. Minella, A. Schlesner, Y. Ameijeiras- Marino, and J. Vanderborght, "Spatial variability of soil water content and soil electrical conductivity across scales derived from electromagnetic induction and time domain reflectometry,", Vol. 314, 160-174, 2018.
doi:10.1016/j.geoderma.2017.10.045

13. Klotzsche, A., F. Jonard, M. C. Looms, J. van der Kruk, and J. A. Huisman, "Measuring soil water content with ground penetrating radar: A decade of progress," Vadose Zone Journal, Vol. 17, No. 1, 1-9, 2018.
doi:10.2136/vzj2018.03.0052

14. Liu, X., J. Chen, X. Cui, Q. Liu, X. Cao, and X. Chen, "Measurement of soil water content using ground-penetrating radar: A review of current methods," International Journal of Digital Earth, Vol. 12, No. 1, 95-118, 2019.
doi:10.1080/17538947.2017.1412520

15. Daniels, J. J., D. J. Guntun, and H. F. Scott, "Introduction to subsurface radar," IEE Proc. F Commun. Radar Signal Process., 278-320, 1988.
doi:10.1049/ip-f-1.1988.0038

16. Rohman, B. P. A. and M. Nishimoto, "Near-surface soil water content estimation using UWB-GPR based on selective sparse representation," 2018 IEEE Sensors Applications Symposium, SAS 2018 --- Proceedings, 1-5, IEEE, 2018.

17. Immoreev, I. I. and P. D. V. Fedotov, "Ultra wideband radar systems: Advantages and disadvantages," 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 201-205, IEEE, 2002.
doi:10.1109/UWBST.2002.1006348

18. Skolnik, M. I., Radar Hanbook, The McGraw-Hill, 1990.

19. Lombardi, F. and M. Lualdi, "Step-frequency ground penetrating radar for agricultural soil morphology characterisation," Remote Sensing, Vol. 11, No. 9, 1075, 2019.
doi:10.3390/rs11091075

20. Lambot, S., J. Rhebergen, I. van den Bosch, E. Slob, and M. Vanclooster, "Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground penetrating radar," Vadose Zone Journal, Vol. 3, No. 4, 1063-1071, 2004.
doi:10.2136/vzj2004.1063

21. Suksmono, A. B., E. Bharata, A. A. Lestari, A. G. Yarovoy, and L. P. Ligthart, "Compressive stepped-frequency continuous-wave ground-penetrating radar," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 665-669, 2010.
doi:10.1109/LGRS.2010.2045340

22. Ylaya, V. J. V., O. J. L. Gerasta, J. M. S. Macasero, D. P. Pongcol, N. M. Pandian, and R. R. P. Vicerra, "Linear frequency modulated continuous wave LFM-CW short-range radar for detecting subsurface water content with deep learning," 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environm, 1-6, IEEE, 2020.

23. Jannah, S., A. A. Pramudita, and F. Y. Suratman, "Experiment of FMCW radar for small displacement detection using VNA," 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 1-6, IEEE, 2021.

24. Shahdan, I. S., R. Mardeni, and K. S. Subari, "Simulation of frequency modulated continuous wave ground penetrating radar using advanced design system (ADS)," 2010 IEEE Asia-Paci c Conference on Applied Electromagnetics (APACE), 1-5, IEEE, 2010.

25. Mayoral, C. Q., C. G. Gonzalez, J. C. I. Galarregui, D. Marin, D. Gaston, C. Miranda, R. Gonzalo, I. Maestrojuan, L. G. Santesteban, and I. Ederra, "Water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 8, 5595-5605, 2019.
doi:10.1109/TGRS.2019.2900565

26. Aliefudin, F. N., D. Arseno, and A. Pramudita, "Wall effect compensation for detection improvement of through the wall radar," 2019 International Conference on Information and Communications Technology (ICOIACT), 281-284, IEEE, 2019.
doi:10.1109/ICOIACT46704.2019.8938470

27. Purwandani, A. and A. Pramudita, "Accuracy improvement in through the wall radar based on deconvolution and delay estimation," 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 288-292, IEEE, 2020.
doi:10.1109/EECCIS49483.2020.9263437

28. Ridhia, F. and A. A. Pramudita, "A method for estimating soil water content in the presence of vegetation using FMCW radar," 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 154-159, IEEE, 2022.
doi:10.1109/EECCIS54468.2022.9902952

29. Huang, T., C. Zhang, D. Lu, Q. Zeng, W. Fu, and Y. Yan, "Improving FMCW GPR precision through the CZT algorithm for pavement thickness measurements," Electronics, Vol. 11, No. 21, 2022.

30. Topp, G. C., J. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Research, Vol. 16, No. 3, 574-582, 1980.
doi:10.1029/WR016i003p00574

31. Pramudita, A. A., Y. Wahyu, S. Rizal, M. D. Prasetio, A. N. Jati, R. Wulansari, and H. H. Ryanu, "Soil water content estimation with the presence of vegetation using ultra wideband radar-drone," IEEE Access, Vol. 10, 85213-85227, 2022.
doi:10.1109/ACCESS.2022.3197636

32. Bechtel, T., S. Truskavetsky, G. Pochanin, L. Capineri, A. Sherstyuk, K. Viatkin, T. Byndych, V. Ruban, L. Varyanitza-Roschupkina, O. Orlenko, et al. "Characterization of electromagnetic properties of in situ soils for the design of landmine detection sensors: Application in Donbass, Ukraine," Remote Sensing, Vol. 11, No. 10, 1232, 2019.
doi:10.3390/rs11101232

33. Bodale, I., G. Mihalache, V. Achitei, G.-C. Teliban, A. Cazacu, and V. Stoleru, "Evaluation of the nutrients uptake by tomato plants in different phenological stages using an electrical conductivity technique," Agriculture, Vol. 11, No. 4, 292, 2021.
doi:10.3390/agriculture11040292

34. Wu, M. and C. Kubota, "Effects of electrical conductivity of hydroponic nutrient solution on leaf gas exchange of five greenhouse tomato cultivars," Hort Technology, Vol. 18, No. 2, 271-277, 2008.
doi:10.21273/HORTTECH.18.2.271

35. Filho, J., C. Gaspar de Oliveira, P. Caramori, G. Nagashima, and F. Hernandez, "Cold tolerance of forage plant species," Semina: Ciencias Agrarias, Vol. 39, 1469, 2018.
doi:10.5433/1679-0359.2018v39n4p1469

36. Calori, A. H., T. L. Factor, J. C. Feltran, E. Y.Watanabe, C. C. D. Moraes, and L. F. V. Purquerio, "Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring)," Bragantia, Vol. 76, 23-32, 2017.
doi:10.1590/1678-4499.022