1. Passioura, J. B., "Soil conditions and plant growth," Plant, Cell and Environment, Vol. 25, No. 2, 311-318, 2002.
doi:10.1046/j.0016-8025.2001.00802.x
2. Loynachan, T. E., K. W. Brown, T. H. Cooper, M. H. Milford, et al. "Sustaining our soils and society," American Geological Institute, 1999.
3. Leopold, A. C. and P. E. Kriedemann, Plant Growth and Development, Tata McGraw-Hill, 1975.
4. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone Journal, Vol. 2, No. 4, 476-491, 2003.
5. Lal, R. and M. Shukla, Soil Water Evaporation, Marcel Dekker Inc., 2004.
6. Pramudita, A. and L. Sari, "Extraction model of soil water content information based on least square method for GPR," 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-5, IEEE, 2016.
7. You, K. Y., J. Salleh, Z. Abbas, and L. You, "A rectangular patch antenna technique for the determination of moisture content in soil," PIERS Online, 850-854, 2010.
8. Ghazali, M. F., K. Wikantika, A. B. Harto, and A. Kondoh, "Generating soil salinity, soil moisture, soil ph from satellite imagery and its analysis," Information Processing in Agriculture, Vol. 7, No. 2, 294-306, 2020.
doi:10.1016/j.inpa.2019.08.003
9. Zhao, T., L. Hu, J. Shi, H. Lu, S. Li, D. Fan, P. Wang, D. Geng, C. S. Kang, and Z. Zhang, "Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations," Remote Sensing of Environment, Vol. 248, 111958, 2020.
doi:10.1016/j.rse.2020.111958
10. Qiu, J., W. T. Crow, W. Wagner, and T. Zhao, "Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing," International Journal of Applied Earth Observation and Geoinformation, Vol. 80, 47-57, 2019.
doi:10.1016/j.jag.2019.03.015
11. Leao, T. P., B. F. D. da Costa, V. B. Bufon, and F. F. H. Aragon, "Using time domain reflectometry to estimate water content of three soil orders under savanna in brazil," Geoderma Regional, Vol. 21, e00280, 2020.
doi:10.1016/j.geodrs.2020.e00280
12. Robinet, J., C. von Hebel, G. Govers, J. van der Kruk, J. P. Minella, A. Schlesner, Y. Ameijeiras- Marino, and J. Vanderborght, "Spatial variability of soil water content and soil electrical conductivity across scales derived from electromagnetic induction and time domain reflectometry,", Vol. 314, 160-174, 2018.
doi:10.1016/j.geoderma.2017.10.045
13. Klotzsche, A., F. Jonard, M. C. Looms, J. van der Kruk, and J. A. Huisman, "Measuring soil water content with ground penetrating radar: A decade of progress," Vadose Zone Journal, Vol. 17, No. 1, 1-9, 2018.
doi:10.2136/vzj2018.03.0052
14. Liu, X., J. Chen, X. Cui, Q. Liu, X. Cao, and X. Chen, "Measurement of soil water content using ground-penetrating radar: A review of current methods," International Journal of Digital Earth, Vol. 12, No. 1, 95-118, 2019.
doi:10.1080/17538947.2017.1412520
15. Daniels, J. J., D. J. Guntun, and H. F. Scott, "Introduction to subsurface radar," IEE Proc. F Commun. Radar Signal Process., 278-320, 1988.
doi:10.1049/ip-f-1.1988.0038
16. Rohman, B. P. A. and M. Nishimoto, "Near-surface soil water content estimation using UWB-GPR based on selective sparse representation," 2018 IEEE Sensors Applications Symposium, SAS 2018 --- Proceedings, 1-5, IEEE, 2018.
17. Immoreev, I. I. and P. D. V. Fedotov, "Ultra wideband radar systems: Advantages and disadvantages," 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 201-205, IEEE, 2002.
doi:10.1109/UWBST.2002.1006348
18. Skolnik, M. I., Radar Hanbook, The McGraw-Hill, 1990.
19. Lombardi, F. and M. Lualdi, "Step-frequency ground penetrating radar for agricultural soil morphology characterisation," Remote Sensing, Vol. 11, No. 9, 1075, 2019.
doi:10.3390/rs11091075
20. Lambot, S., J. Rhebergen, I. van den Bosch, E. Slob, and M. Vanclooster, "Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground penetrating radar," Vadose Zone Journal, Vol. 3, No. 4, 1063-1071, 2004.
doi:10.2136/vzj2004.1063
21. Suksmono, A. B., E. Bharata, A. A. Lestari, A. G. Yarovoy, and L. P. Ligthart, "Compressive stepped-frequency continuous-wave ground-penetrating radar," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 665-669, 2010.
doi:10.1109/LGRS.2010.2045340
22. Ylaya, V. J. V., O. J. L. Gerasta, J. M. S. Macasero, D. P. Pongcol, N. M. Pandian, and R. R. P. Vicerra, "Linear frequency modulated continuous wave LFM-CW short-range radar for detecting subsurface water content with deep learning," 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environm, 1-6, IEEE, 2020.
23. Jannah, S., A. A. Pramudita, and F. Y. Suratman, "Experiment of FMCW radar for small displacement detection using VNA," 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 1-6, IEEE, 2021.
24. Shahdan, I. S., R. Mardeni, and K. S. Subari, "Simulation of frequency modulated continuous wave ground penetrating radar using advanced design system (ADS)," 2010 IEEE Asia-Pacic Conference on Applied Electromagnetics (APACE), 1-5, IEEE, 2010.
25. Mayoral, C. Q., C. G. Gonzalez, J. C. I. Galarregui, D. Marin, D. Gaston, C. Miranda, R. Gonzalo, I. Maestrojuan, L. G. Santesteban, and I. Ederra, "Water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 8, 5595-5605, 2019.
doi:10.1109/TGRS.2019.2900565
26. Aliefudin, F. N., D. Arseno, and A. Pramudita, "Wall effect compensation for detection improvement of through the wall radar," 2019 International Conference on Information and Communications Technology (ICOIACT), 281-284, IEEE, 2019.
doi:10.1109/ICOIACT46704.2019.8938470
27. Purwandani, A. and A. Pramudita, "Accuracy improvement in through the wall radar based on deconvolution and delay estimation," 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 288-292, IEEE, 2020.
doi:10.1109/EECCIS49483.2020.9263437
28. Ridhia, F. and A. A. Pramudita, "A method for estimating soil water content in the presence of vegetation using FMCW radar," 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 154-159, IEEE, 2022.
doi:10.1109/EECCIS54468.2022.9902952
29. Huang, T., C. Zhang, D. Lu, Q. Zeng, W. Fu, and Y. Yan, "Improving FMCW GPR precision through the CZT algorithm for pavement thickness measurements," Electronics, Vol. 11, No. 21, 2022.
30. Topp, G. C., J. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Research, Vol. 16, No. 3, 574-582, 1980.
doi:10.1029/WR016i003p00574
31. Pramudita, A. A., Y. Wahyu, S. Rizal, M. D. Prasetio, A. N. Jati, R. Wulansari, and H. H. Ryanu, "Soil water content estimation with the presence of vegetation using ultra wideband radar-drone," IEEE Access, Vol. 10, 85213-85227, 2022.
doi:10.1109/ACCESS.2022.3197636
32. Bechtel, T., S. Truskavetsky, G. Pochanin, L. Capineri, A. Sherstyuk, K. Viatkin, T. Byndych, V. Ruban, L. Varyanitza-Roschupkina, O. Orlenko, et al. "Characterization of electromagnetic properties of in situ soils for the design of landmine detection sensors: Application in Donbass, Ukraine," Remote Sensing, Vol. 11, No. 10, 1232, 2019.
doi:10.3390/rs11101232
33. Bodale, I., G. Mihalache, V. Achitei, G.-C. Teliban, A. Cazacu, and V. Stoleru, "Evaluation of the nutrients uptake by tomato plants in different phenological stages using an electrical conductivity technique," Agriculture, Vol. 11, No. 4, 292, 2021.
doi:10.3390/agriculture11040292
34. Wu, M. and C. Kubota, "Effects of electrical conductivity of hydroponic nutrient solution on leaf gas exchange of five greenhouse tomato cultivars," Hort Technology, Vol. 18, No. 2, 271-277, 2008.
doi:10.21273/HORTTECH.18.2.271
35. Filho, J., C. Gaspar de Oliveira, P. Caramori, G. Nagashima, and F. Hernandez, "Cold tolerance of forage plant species," Semina: Ciencias Agrarias, Vol. 39, 1469, 2018.
doi:10.5433/1679-0359.2018v39n4p1469
36. Calori, A. H., T. L. Factor, J. C. Feltran, E. Y.Watanabe, C. C. D. Moraes, and L. F. V. Purquerio, "Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring)," Bragantia, Vol. 76, 23-32, 2017.
doi:10.1590/1678-4499.022