Vol. 98
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-03
Comparative Analysis of Smart Beam-Steering Antennas for mm -Wave Communication Systems & 5G
By
Progress In Electromagnetics Research B, Vol. 98, 147-164, 2023
Abstract
The aim of the next-generation 5G wireless network is to provide high data rates, low latency, increased network capacity and improved quality of surface (QoS) for wireless communication and internet of things (IoT). The millimetric wave communication is a promising technique with the capability of providing multi-gigabit transmission rate, network flexibility and cost-effectiveness for 5G backhauling. Smart antennas are a critical requirement for the success of millimetric wave communication system, and these antennas have the capability to form a high gain beam in desired direction and a null towards interfering signal. Directional beam-forming mitigates the high path loss associated with millimetric communication & improve signal to interference noise ratio. This article presents comparative analysis, effectiveness, and current limitations of various beam steering techniques for 5G networks based on some figures of merit with the aim of highlighting areas of improvements for each beam steering technique.
Citation
Shafaq Kausar, Ahmed Kausar, Hani Mehrpouyan, Muhammad Usman Hadi, and Salahuddin Tariq, "Comparative Analysis of Smart Beam-Steering Antennas for mm -Wave Communication Systems & 5G," Progress In Electromagnetics Research B, Vol. 98, 147-164, 2023.
doi:10.2528/PIERB22112301
References

1. Albreem, M. A. M., "5G wireless communication systems: Vision and challenges," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), 493-497, Apr. 2015.
doi:10.1109/I4CT.2015.7219627

2. Gohil, A., H. Modi, and S. K. Patel, "5G technology of mobile communication: A survey," 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 288-292, Mar. 2013.
doi:10.1109/ISSP.2013.6526920

3. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, Apr. 2017.
doi:10.1109/MWC.2016.1400374RP

4. Al-Ogaili, F. and R. M. Shubair, "Millimeter-wave mobile communications for 5G: Challenges and opportunities," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1003-1004, Jun. 2016.
doi:10.1109/APS.2016.7696210

5. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

6. Venkatarayalu, N. V. and T. Ray, "Optimum design of Yagi-Uda antennas using computational intelligence," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1811-1818, Jul. 2004.
doi:10.1109/TAP.2004.831338

7. Arceo, D. and C. A. Balanis, "A compact Yagi-Uda antenna with enhanced bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 442-445, 2011.
doi:10.1109/LAWP.2011.2150730

8. Sharma, S. K. and L. Shafai, "Beam focusing properties of circular monopole array antenna on a finite ground plane," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3406-3409.
doi:10.1109/TAP.2005.856376

9. Simpson, T. and J. Tillman, "Parasitic excitation of circular antenna arrays," IRE Transactions on Antennas and Propagation, Vol. 9, No. 3, 263-267, May 1961.
doi:10.1109/TAP.1961.1144996

10. Kausar, S., H. U. Rahman, A. Kausar, and T. Hassan, "Espar antenna system for dynamic tracking of active targets," 2013 European Modelling Symposium, 533-535, Nov. 2013.

11. Kausar, A., H. Mehrpouyan, M. Sellathurai, R. Qian, and S. Kausar, "Energy efficient switched parasitic array antenna for 5G networks and IOT," 2016 Loughborough Antennas Propagation Conference (LAPC), 1-5, Nov. 2016.

12. Kausar, S., H. U. Rahman, T. Hassan, and A. Kausar, "Miniaturization of espar antenna using folded monopoles and conical central element," 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 87-91, Oct. 2015.

13. Hou, Y., R. Ferdian, S. Denno, and M. Okada, "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679

14. Hou, Y. F., "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679

15. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra wide band antenna based on a SIS resonator," Progress In Electromagnetics Research C, Vol. 103, 187-193, 2020.

16. Kshetrimayum, R. S., "A brief intro to metamaterials," IEEE Potentials, Vol. 23, No. 5, 44-46, Dec. 2005.

17. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, Jul. 2012.

18. Giovampaola, C. D. and S. Maci, "Historical overview of EM metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 693-694, Jun. 2016.

19. Caloz, C., "Ten applications of metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1299-1300, Jun. 2016.

20. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, Apr. 2005.

21. Jiang, M., Z. N. Chen, Y. Zhang, W. Hong, and X. Xuan, "Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 464-472, Feb. 2017.

22. Ala-Laurinaho, J., J. Aurinsalo, A. Karttunen, M. Kaunisto, A. Lamminen, J. Nurmiharju, A. V. Raisanen, J. Saily, and P. Wain, "2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2244-2255, Jul. 2016.

23. Cho, Y. J., G. Suk, B. Kim, D. K. Kim, and C. Chae, "RF lens-embedded antenna array for MMwave MIMO: Design and performance," IEEE Communications Magazine, Vol. 56, No. 7, 42-48, Jul. 2018.

24. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. L. Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2757-2762, Aug. 2010.

25. Yashchyshyn, Y., K. Derzakowski, G. Bogdan, K. Godziszewski, D. Nyzovets, C. H. Kim, and B. Park, "28 GHz switched-beam antenna based on S-pin diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228.

26. Huang, F., W. Chen, and M. Rao, "Switched-beam antenna array based on butler matrix for 5G wireless communication," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, May 2016.

27. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched beam systems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3672-3676, Nov. 2009.

28. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.

29. Alreshaid, A. T., O. Hammi, M. S. Sharawi, and K. Sarabandi, "A millimeter wave switched beam planar antenna array," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2117-2118, 2015.

30. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, Apr. 1993.

31. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "An X-band passive reflect-array using dualfeed aperture-coupled patch antennas," 1999 Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No. 99TH8473), Vol. 3, 906-909, Nov. 1999.

32. Dahri, M. H., M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, "A review of wideband reflectarray antennas for 5G communication systems," IEEE Access, Vol. 5, 17803-17815, 2017.

33. Haraz, O. M. and M. M. M. Ali, "A millimeter-wave circular reflectarray antenna for future 5G cellular networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1534-1535, 2015.

34. Shen, Y., S. Hu, and W. Dou, "38 GHz folded reflectarray antenna for point-to-point 5G communications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 369-370, Jul. 2016.

35. Yang, Y., "Analytic solution of free space optical beam steering using risley prisms," Journal of Lightwave Technology, Vol. 26, No. 21, 3576-3583, Nov. 2008.

36. Tame, B. J. and N. A. Stutzke, "Steerable risley prism antennas with low side lobes in the Ka band," 2010 IEEE International Conference on Wireless Information Technology and Systems, 1-4, Aug. 2010.

37. Gagnon, N., A. Petosa, and D. A. McNamara, "Research and development on phase-shifting surfaces (PSSS)," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 29-48, Apr. 2013.

38. Gagnon, N. and A. Petosa, "Using rotatable planar phase shifting surfaces to steer a high-gain beam," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3086-3092, Jun. 2013.

39. Gagnon, N., A. Petosa, and D. A. McNamara, "Thin microwave quasi-transparent phase-shifting surface (PSS)," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1193-1201, Apr. 2010.

40. Sievenpiper, D. F., Artificial Impedance Surfaces for Antennas, Ch. 15, 737-777, John Wiley & Sons, Ltd., 2008, [Online], Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/978047029-4154.ch15.

41. Colburn, J. S., A. Lai, D. F. Sievenpiper, A. Bekaryan, B. H. Fong, J. J. Ottusch, and P. Tulythan, "Adaptive artificial impedance surface conformal antennas," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Jun. 2009.

42. Sievenpiper, D., J. Colburn, B. Fong, J. Ottusch, and J. Visher, "Holographic artificial impedance surfaces for conformal antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 256-259, Jul. 2005.

43. De Kok, M., A. B. Smolders, and U. Johannsen, "A review of design and integration technologies for D-band antennas," IEEE Open Journal of Antennas and Propagation, Vol. 2, 746-758, 2021.

44. Ullah, M. A., R. Keshavarz, M. Abolhasan, J. Lipman, K. P. Esselle, and N. Shariati, "A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications," IEEE Access, Vol. 10, 17231-17267, 2022.

45. Abdullah, S., G. Xiao, and R. E. Amaya, "A review on the history and current literature of metamaterials and its applications to antennas and radio frequency identification (RFID) devices," IEEE Journal of Radio Frequency Identification, Vol. 5, No. 4, 427-445, 2021.

46. Lu, G., J. Wang, Z. Xie, and J. T. W. Yeow, "Carbon-based THz microstrip antenna design: A review," IEEE Open Journal of Nanotechnology, Vol. 3, 15-23, 2022.

47. Chaloun, T., L. Boccia, E. Arnieri, M. Fischer, V. Valenta, N. J. G. Fonseca, and C. Waldschmidt, "Electronically steerable antennas for future heterogeneous communication networks: Review and perspectives," IEEE Journal of Microwaves, Vol. 2, No. 4, 545-581, 2022.

48. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and cubesat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.