1. Albreem, M. A. M., "5G wireless communication systems: Vision and challenges," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), 493-497, Apr. 2015.
doi:10.1109/I4CT.2015.7219627
2. Gohil, A., H. Modi, and S. K. Patel, "5G technology of mobile communication: A survey," 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 288-292, Mar. 2013.
doi:10.1109/ISSP.2013.6526920
3. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, Apr. 2017.
doi:10.1109/MWC.2016.1400374RP
4. Al-Ogaili, F. and R. M. Shubair, "Millimeter-wave mobile communications for 5G: Challenges and opportunities," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1003-1004, Jun. 2016.
doi:10.1109/APS.2016.7696210
5. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304
6. Venkatarayalu, N. V. and T. Ray, "Optimum design of Yagi-Uda antennas using computational intelligence," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1811-1818, Jul. 2004.
doi:10.1109/TAP.2004.831338
7. Arceo, D. and C. A. Balanis, "A compact Yagi-Uda antenna with enhanced bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 442-445, 2011.
doi:10.1109/LAWP.2011.2150730
8. Sharma, S. K. and L. Shafai, "Beam focusing properties of circular monopole array antenna on a finite ground plane," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3406-3409.
doi:10.1109/TAP.2005.856376
9. Simpson, T. and J. Tillman, "Parasitic excitation of circular antenna arrays," IRE Transactions on Antennas and Propagation, Vol. 9, No. 3, 263-267, May 1961.
doi:10.1109/TAP.1961.1144996
10. Kausar, S., H. U. Rahman, A. Kausar, and T. Hassan, "Espar antenna system for dynamic tracking of active targets," 2013 European Modelling Symposium, 533-535, Nov. 2013.
11. Kausar, A., H. Mehrpouyan, M. Sellathurai, R. Qian, and S. Kausar, "Energy efficient switched parasitic array antenna for 5G networks and IOT," 2016 Loughborough Antennas Propagation Conference (LAPC), 1-5, Nov. 2016.
12. Kausar, S., H. U. Rahman, T. Hassan, and A. Kausar, "Miniaturization of espar antenna using folded monopoles and conical central element," 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 87-91, Oct. 2015.
13. Hou, Y., R. Ferdian, S. Denno, and M. Okada, "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679
14. Hou, Y. F., "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679
15. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra wide band antenna based on a SIS resonator," Progress In Electromagnetics Research C, Vol. 103, 187-193, 2020.
16. Kshetrimayum, R. S., "A brief intro to metamaterials," IEEE Potentials, Vol. 23, No. 5, 44-46, Dec. 2005.
17. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, Jul. 2012.
18. Giovampaola, C. D. and S. Maci, "Historical overview of EM metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 693-694, Jun. 2016.
19. Caloz, C., "Ten applications of metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1299-1300, Jun. 2016.
20. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, Apr. 2005.
21. Jiang, M., Z. N. Chen, Y. Zhang, W. Hong, and X. Xuan, "Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 464-472, Feb. 2017.
22. Ala-Laurinaho, J., J. Aurinsalo, A. Karttunen, M. Kaunisto, A. Lamminen, J. Nurmiharju, A. V. Raisanen, J. Saily, and P. Wain, "2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2244-2255, Jul. 2016.
23. Cho, Y. J., G. Suk, B. Kim, D. K. Kim, and C. Chae, "RF lens-embedded antenna array for MMwave MIMO: Design and performance," IEEE Communications Magazine, Vol. 56, No. 7, 42-48, Jul. 2018.
24. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. L. Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2757-2762, Aug. 2010.
25. Yashchyshyn, Y., K. Derzakowski, G. Bogdan, K. Godziszewski, D. Nyzovets, C. H. Kim, and B. Park, "28 GHz switched-beam antenna based on S-pin diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228.
26. Huang, F., W. Chen, and M. Rao, "Switched-beam antenna array based on butler matrix for 5G wireless communication," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, May 2016.
27. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched beam systems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3672-3676, Nov. 2009.
28. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
29. Alreshaid, A. T., O. Hammi, M. S. Sharawi, and K. Sarabandi, "A millimeter wave switched beam planar antenna array," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2117-2118, 2015.
30. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, Apr. 1993.
31. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "An X-band passive reflect-array using dualfeed aperture-coupled patch antennas," 1999 Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No. 99TH8473), Vol. 3, 906-909, Nov. 1999.
32. Dahri, M. H., M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, "A review of wideband reflectarray antennas for 5G communication systems," IEEE Access, Vol. 5, 17803-17815, 2017.
33. Haraz, O. M. and M. M. M. Ali, "A millimeter-wave circular reflectarray antenna for future 5G cellular networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1534-1535, 2015.
34. Shen, Y., S. Hu, and W. Dou, "38 GHz folded reflectarray antenna for point-to-point 5G communications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 369-370, Jul. 2016.
35. Yang, Y., "Analytic solution of free space optical beam steering using risley prisms," Journal of Lightwave Technology, Vol. 26, No. 21, 3576-3583, Nov. 2008.
36. Tame, B. J. and N. A. Stutzke, "Steerable risley prism antennas with low side lobes in the Ka band," 2010 IEEE International Conference on Wireless Information Technology and Systems, 1-4, Aug. 2010.
37. Gagnon, N., A. Petosa, and D. A. McNamara, "Research and development on phase-shifting surfaces (PSSS)," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 29-48, Apr. 2013.
38. Gagnon, N. and A. Petosa, "Using rotatable planar phase shifting surfaces to steer a high-gain beam," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3086-3092, Jun. 2013.
39. Gagnon, N., A. Petosa, and D. A. McNamara, "Thin microwave quasi-transparent phase-shifting surface (PSS)," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1193-1201, Apr. 2010.
40. Sievenpiper, D. F., Artificial Impedance Surfaces for Antennas, Ch. 15, 737-777, John Wiley & Sons, Ltd., 2008, [Online], Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/978047029-4154.ch15.
41. Colburn, J. S., A. Lai, D. F. Sievenpiper, A. Bekaryan, B. H. Fong, J. J. Ottusch, and P. Tulythan, "Adaptive artificial impedance surface conformal antennas," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Jun. 2009.
42. Sievenpiper, D., J. Colburn, B. Fong, J. Ottusch, and J. Visher, "Holographic artificial impedance surfaces for conformal antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 256-259, Jul. 2005.
43. De Kok, M., A. B. Smolders, and U. Johannsen, "A review of design and integration technologies for D-band antennas," IEEE Open Journal of Antennas and Propagation, Vol. 2, 746-758, 2021.
44. Ullah, M. A., R. Keshavarz, M. Abolhasan, J. Lipman, K. P. Esselle, and N. Shariati, "A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications," IEEE Access, Vol. 10, 17231-17267, 2022.
45. Abdullah, S., G. Xiao, and R. E. Amaya, "A review on the history and current literature of metamaterials and its applications to antennas and radio frequency identification (RFID) devices," IEEE Journal of Radio Frequency Identification, Vol. 5, No. 4, 427-445, 2021.
46. Lu, G., J. Wang, Z. Xie, and J. T. W. Yeow, "Carbon-based THz microstrip antenna design: A review," IEEE Open Journal of Nanotechnology, Vol. 3, 15-23, 2022.
47. Chaloun, T., L. Boccia, E. Arnieri, M. Fischer, V. Valenta, N. J. G. Fonseca, and C. Waldschmidt, "Electronically steerable antennas for future heterogeneous communication networks: Review and perspectives," IEEE Journal of Microwaves, Vol. 2, No. 4, 545-581, 2022.
48. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and cubesat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.