Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-02
Design and Fabrication of a Compact UWB BPF with Notch-Band and Wide Stopband Using Dual MMRs and DGS
By
Progress In Electromagnetics Research Letters, Vol. 109, 75-83, 2023
Abstract
This paper presents a new design of a compact microstrip ultra-wideband (UWB) single notch-band bandpass filter (BPF) along with its equivalent circuit model. The basic structure of the proposed filter consists of dual symmetrical multiple-mode resonator (MMR), four stub-loaded stepped impedance resonators (SLSIRs), two defected ground structure (DGS) units and a coupled folded arm resonator (CFAR) with feeding line. The presented filter is tested using R&S® ZNB20 vector network analyzer (VNA) to validate the simulated results. A good agreement between the measured and simulated (EM and circuit model) results is achieved.
Citation
Hassiba Louazene, Mouloud Challal, and M'hamed Boulakroune, "Design and Fabrication of a Compact UWB BPF with Notch-Band and Wide Stopband Using Dual MMRs and DGS," Progress In Electromagnetics Research Letters, Vol. 109, 75-83, 2023.
doi:10.2528/PIERL22112004
References

1. Federal Communications Commission "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems,", Tech. Rep., ET-Docket 98-153, FCC02-48, Apr. 2002.

2. Zhu, L., Sh. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, Nov. 2005.

3. Chakraborty, P., P. P. Shome, A. Deb, A. Neogi, and J. R. Panda, "Compact con guration of open ended stub loaded multi-mode resonator based UWB bandpass filter with high selectivity," 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), 59-63, 2021, doi: 10.1109/SPIN52536.2021.9565956.
doi:10.1109/LMWC.2009.2013733

4. Weng, M. H., C.-T. Liauh, H.-W. Wu, and S. R. Vargas, "An ultra-wideband bandpass lter with an embedded open-circuited stub structure to improve in-band performance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 146-148, Mar. 2009, doi: 10.1109/LMWC.2009.2013733.
doi:10.1016/j.procs.2015.12.006

5. Louazene, H., M. Challal, and M. Boulakroune, "Compact ultra-wide band bandpass filter design employing multiple-mode resonator and defected ground structure," Procedia Computer Science, Vol. 73, 376-383, Dec. 2015, doi: 10.1016/j.procs.2015.12.006.

6. Louazene, H., M. Boulakroune, and M. Challal, "UWB microstrip bandpass lter using multiple-mode resonator and rectangular-shaped DGS," International Conference on Telecommunication and Applications (ICTA-14), Bejaia, Algeria, Apr. 23-24, 2014.

7. Boulakroune, M., M. Challal, H. Louazene, and S. Fentiz, "Design and synthesis of two tunable bandpass filters based on varactors and defected ground structure," International Journal of Electrical, Computer, Electronics and Communication Engineering, Vol. 9, No. 3, 271-275, 2015, doi: 10.5281/zenodo.1099706.

8. Louazene, H., M. Boulakroune, and M. Challal, "The broadside-coupled microstrip structure using open loop resonator DGS," The 2014 International Symposium on Networks, Computers and Communications, 1-4, 2014, doi: 10.1109/SNCC.2014.6866532.

9. Ghazali, A. N. and A. Singh, "Broadside coupled UWB filter with dual notched band and extended upper stopband," 2014 International Conference on Devices, Circuits and Communications (ICDCCom), 1-5, 2014, doi: 10.1109/ICDCCom.2014.7024701.
doi:10.1109/LMWC.2010.2053024

10. Chu, Q.-X. and X.-K. Tian, "Design of UWB bandpass filter using stepped-impedance stub-loaded resonator," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 9, 501-503, Sept. 2010, doi: 10.1109/LMWC.2010.2053024.

11. Khalid, S. and S. Q. Ali, "Design of highly selective ultra-wideband (UWB) bandpass lter using step impedance resonator and parallel coupled lines," 2015 Symposium on Recent Advances in Electrical Engineering (RAEE), 1-4, 2015, doi: 10.1109/RAEE.2015.7352760.

12. Hammed, R. T. and D. Mirshekar-Syahkal, "High-order UWB bandpass filter using cascaded E-shape microstrip structure," 2011 IEEE MTT-S International Microwave Symposium, 1-4, 2011, doi: 10.1109/MWSYM.2011.5972811.
doi:10.1017/S1759078715001026

13. Zhang, T., F. Xiao, X. Tang, and L. Guo, "A multi-mode resonator-based UWB bandpass lter with wide stopband," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 7, 1031-1035, Nov. 2016, doi: 10.1017/S1759078715001026.
doi:10.1504/IJHPCN.2018.089889

14. Louazene, H., M. Challal, and M. Boulakroune, "Compact UWB BPF with notch-band using SIR and DGS," Int. J. High Performance Computing and Networking, Vol. 11, No. 2, 167-172, 2018, doi: 10.1504/IJHPCN.2018.089889.
doi:10.1109/TMTT.2011.2178428

15. Wu, Z., Y. Shim, and M. Rais-Zadeh, "Miniaturized UWB filters integrated with tunable notch lters using a silicon-based integrated passive device technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 518-527, Mar. 2012, doi: 10.1109/TMTT.2011.2178428.

16. Louazene, H., M. Challal, and M. Boulakroune, "Band-notched ultra-wideband bandpass filter design using multiple-mode resonator and stepped impedance stub loaded," 2017 5th International Conference on Electrical Engineering --- Boumerdes (ICEE-B), 1-5, 2017, doi: 10.1109/ICEE-B.2017.8192151.
doi:10.1109/LMWC.2010.2040212

17. Luo, X., J.-G. Ma, K. Ma, and K. S. Yeo, "Compact UWB bandpass filter with ultra narrow notched band," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 3, 145-147, Mar. 2010, doi: 10.1109/LMWC.2010.2040212.
doi:10.1504/IJUWBCS.2019.101173

18. Shavakand, M. Y. and J. A. Shokouh, "Compact UWB filter with narrow notched band based on grounded circular patch resonator," Int. J. Ultra Wideband Communications and Systems, Vol. 4, No. 1, 2019, doi: 10.1504/IJUWBCS.2019.101173.

19. Zhou, J. Ch., P. Guo, and W. Wu, "Compact UWB BPF with a tunable notched band based on triple-mode HMSIW resonator," I.J. Wireless and Microwave Technologies, Vol. 1, 1-12, 2016, doi: 10.5815/ijwmt.2016.01.01.
doi:10.2528/PIERC13031505

20. Ghazali, A. N. and S. Pal, "UWB-BPF with application based triple notches and suppressed stopband," Progress In Electromagnetics Research C, Vol. 39, 149-163, 2013.

21. Sen, S. and T. Moyra, "Modeling of a compact ultra-wideband bandpass filter with a single notch using DGS and DMS technology," Waves in Random and Complex Media, 2021, doi: 10.1080/17455030.2021.1987585.
doi:10.3390/electronics11071124

22. Liu, L.-Q., H.-S. Lai, H.-M. Hu, J.-J. Chen, M.-H. Weng, and R.-Y. Yang, "A simple method to design a UWB filter with a notched band using short-circuit step impedance stubs," Electronics, Vol. 11, 1124, 2022, https://doi.org/10.3390/electronics11071124.
doi:10.1016/j.promfg.2019.02.269

23. Azizi, S., M. El Gharbi, S. Ahyoud, and A. Asselman, "Design and analysis of compact microstrip UWB band pass lter with a notched band using defected microstrip structure," Procedia Manufacturing, Vol. 32, 669-674, 2019, doi: 10.1016/j.promfg.2019.02.269.
doi:10.2528/PIERL20062601

24. Huang, L., M. Li, P.-J. Zhang, K. Duan, and Y. Song, "A novel miniaturized UWB bandpass filter basing on E-shaped defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 93, 49-57, 2020.
doi:10.1002/mmce.21054

25. Zhang, T., F. Xiao, J. Bao, and X. Tang, "A compact UWB bandpass filter with a notched band using a multistubs loaded resonator," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 1, 2017, doi: 10.1002/mmce.21054.

26. Challal, M., "Design and fabrication of a compact UWB filter with WLAN stopband rejection characteristic," The 4th International Conference on Recent Advances in Electrical Systems --- ICRAES'19, Hammamet, Tunisia, Dec. 23-25, 2019, ISBN: 978-9938-9937-2-1.
doi:10.2528/PIERM20042602

27. Basit, A., M. I. Khattak, and M. Alhasan, "Design and analysis of a microstrip planar UWB bandpass lter with triple notch bands for WiMAX, WLAN, and X-band satellite communication systems," Progress In Electromagnetics Research M, Vol. 93, 155-164, 2020.
doi:10.1016/j.promfg.2020.05.009

28. El Bakalia, H. E., H. Elftouha, A. Farkhsia, and A. Zakriti, "A compact UWB bandpass filter with WLAN band rejection using hybrid technique," Procedia Manufacturing, Vol. 46, 922-926, 2020, doi: 10.1016/j.promfg.2020.05.009.