Vol. 122
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-25
Power Handling of Slot Loop Frequency Selective Surface Based on Approximate Analytical Method
By
Progress In Electromagnetics Research M, Vol. 122, 145-153, 2023
Abstract
In this paper, the power handling of a slot loop frequency selective surface based on approximate analytical method is proposed. The physical nature of the slot array periodic moment method is derived in detail. It is found that the left and right sides of periodic scatter matrix respectively represent the total tangential magnetic field acting on the left and right magnetic dipole arrays and moving in the direction of the reference array. According to the principle of equivalence, a slot array can be modeled by an array of magnetic currents on each side of the perfect electronic conductor. As a result, the total tangential magnetic field is zero in the sense of physical concept. Furthermore, a simple sinusoidal function is then used to approximate the magnetic current distribution along the slot loop which is similar to that of dipole antenna. By studying the corresponding zero points and extreme point of the magnetic current for the slot loop frequency selective surface element, the transmission coefficients and maximum electronic field are calculated. Examples of rectangle and triangle slot ring frequency selective surface have verified the efficiency and accuracy of the proposed method.
Citation
Kang Luo, Jin Meng, Danni Zhu, and Jiangfeng Han, "Power Handling of Slot Loop Frequency Selective Surface Based on Approximate Analytical Method," Progress In Electromagnetics Research M, Vol. 122, 145-153, 2023.
doi:10.2528/PIERM22111801
References

1. Molero, Carlos, Raul Rodriguez-Berral, Francisco Mesa, Francisco Medina, Mohammad Memarian, and Tatsuo Itoh, "Planar resonant blazed gratings from a circuit model standpoint," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2765-2778, Apr. 2020.
doi:10.1109/TAP.2019.2963198

2. Luo, Kang, Yun Yi, Zhaoyang Cai, Feng Lu, XiaoLi Zhou, and Bin Chen, "An efficient spectral WLP-FDTD algorithm for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4468-4471, Oct. 2016.
doi:10.1109/TAP.2016.2589976

3. Langley, R. J. and E. A. Parker, "Equivalent-circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

4. Marcuvitz, N., Waveguide Handbook, McGraw, New York, USA, 1951.

5. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent-circuit," Electronics Letters, Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460

6. Li, Mei, ShaoQiu Xiao, Yan-Ying Bai, and Bing-Zhong Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012.
doi:10.1109/LAWP.2012.2206361

7. Costa, Filippo, Agostino Monorchio, and Giuliano Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, May 2010.
doi:10.1109/TAP.2010.2044329

8. Ferreira, David, Rafael F. S. Caldeirinha, Inigo Cuinas, and Telmo R. Fernandes, "Square loop and slot frequency selective surfaces study for equivalent circuit model optimization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3947-3955, Sep. 2015.
doi:10.1109/TAP.2015.2444420

9. Costa, Filippo, Agostino Monorchio, and Giuliano Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 35-48, Aug. 2012.
doi:10.1109/MAP.2012.6309153

10. Molero, Carlos, Raul Rodriguez-Berral, Francisco Mesa, and Francisco Medina, "Dynamical equivalent circuit for 1-D periodic compound gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 1195-1208, Apr. 2016.
doi:10.1109/TMTT.2016.2531663

11. Mesa, Francisco, Maria Garcia-Vigueras, Francisco Medina, Raul Rodriguez-Berral, and Juan R. Mosig, "Circuit-model analysis of frequency selective surfaces with scatterers of arbitrary geometry," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 135-138, 2014.
doi:10.1109/LAWP.2014.2356012

12. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, USA, 2005.

13. Luo, Kang, Yun Yi, Zhi-Yuan Zong, Bin Chen, Xiaoli Zhou, and Yantao Duan, "Approximate analysis method for frequency-selective surface based on kirchhoff-type circuit," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6076-6085, Nov. 2018.
doi:10.1109/TAP.2018.2862239

14. Luo, Kang, Jin Meng, DanNi Zhu, SongHu Ge, and JiangFeng Han, "Approximate analytical method for hexagonal slot frequency selective surface analysis," International Journal of Rf and Microwave Computer-aided Engineering, Vol. 31, No. 9, Sep. 2021.
doi:10.1002/mmce.22776

15. Li, L., Yao-Wu Liu, Kenneth K. Mei, and Kwok-Wa Leung, "Applications of the maxwellian circuits to linear wire antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 10, 2725-2730, Oct. 2006.
doi:10.1109/TAP.2006.882174

16. Mei, K. K., "Theory of Maxwellian circuits," URSI Radio Science Bulletin, Vol. 2003, No. 306, 6-13, Sep. 2003.

17. Shen, Wenhui, Changwei Xue, Kenneth K. Mei, and Jiahong Lin, "Maxwellian circuits of conducting circular loops," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3848-3854, Oct. 2011.
doi:10.1109/TAP.2011.2163771

18. Schelkunoff, S. A. and H. T. Friis, Antennas: Theory and Practice, Wiley, New York, USA, 1952.

19. Zhang, Jihong, Mingtuan Lin, Zhaofeng Wu, Liang Ding, Li'an Bian, and Peiguo Liu, "Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2494-2502, Apr. 2019.
doi:10.1109/TAP.2019.2894274

20. Xie, Hao, Tielun Hu, Zhili Wang, Yanbin Yang, Xiaohui Hu, Wei Qi, and Hong Liu, "A physics-based HIE-FDTD method for electromagnetic modeling of multi-band frequency selective surface," Progress In Electromagnetics Research, Vol. 173, 129-140, 2022.

21. Zhao, Chen, Chao-Fu Wang, and Sheel Aditya, "Power-dependent frequency-selective surface: Concept, design, and experiment," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3215-3220, May 2019.
doi:10.1109/TAP.2019.2900408

22. Li, Xiangqiang, Zhe Zhou, Qingfeng Wang, and Jianqiong Zhang, "A polarization conversion radome for high-power microwave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1096-1099, Jun. 2019.
doi:10.1109/LAWP.2019.2909062