Vol. 108
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-13
A Novel Dual-Band Unequal Filtering Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 108, 123-130, 2023
Abstract
In this paper, an unequal Filtering Power Divider (FPD) adopting a novel dual-band resonator and inter-digital feeding lines structure is presented. By integrating the resonator and modifying coupling mode, filtering and unequal power distribution are all achieved on the base of the deformed Wilkinson power divider. Two sets of cascading resonators operating at 2.45/4.44G with the same structure are proposed for WIFI and other application. Keeping with the unchanged coupling mode, the unequal ratio of 2:1 is arrived by adjusting the strength of coupling. The two resonant frequencies can be adjusted independently to ensure the flexibility of the design. For verifying the theoretical designs and simulated results, a fabricated FPD is exhibited, analyzed and measured. The simulated results are in good agreement with the measured ones with slight variations.
Citation
Yong Xia, Feng Wei, and Xiao-Wei Shi, "A Novel Dual-Band Unequal Filtering Power Divider," Progress In Electromagnetics Research Letters, Vol. 108, 123-130, 2023.
doi:10.2528/PIERL22111201
References

1. Abbosh, A. M., "A compact UWB three-way power divider," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 598-600, Aug. 2007.
doi:10.1109/LMWC.2007.901777

2. Park, M.-J. and B. Lee, "A dual-band Wilkinson power divider," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 85-87, Feb. 2008.
doi:10.1109/LMWC.2007.915031

3. Wilkinson, E., "An N-way hybrid power divider," IRE Trans. Microw. Theory Tech., Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

4. Li, Y. C., Q. Xue, and Y. X. Zhang, "Sigle- and dual-band power dividers integrated with bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, Jan. 2013.
doi:10.1109/TMTT.2012.2226600

5. Liu, W. Q., F. Wei, and X. W. Shi, "A compact tri-band power divider based on triple-mode resonator," Progress In Electromagnetics Research, Vol. 138, 283-291, 2013.
doi:10.2528/PIER13012601

6. Chen, L. and F. Wei, "Compact quad-band power divider based on quad-mode stub loaded resonator," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2016.

7. Wu, Y. L., Y. N. Liu, Q. Xue, S. L. Li, and C. P. Yu, "Analytical design method of multiway dual-band planar power dividers with arbitrary power division," IEEE Trans. on Microw. Theory and Techn., Vol. 58, No. 12, 2010.
doi:10.1109/TMTT.2010.2086712

8. Wu, Y. L., H. Zhou, Y. X. Zhang, and Y. A. Liu, "An unequal Wilkinson power divider for a frequency and its first harmonic," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 11, 737-739, Nov. 2008.
doi:10.1109/LMWC.2008.2005226

9. Chaudhary, G., J. Park, Q. Wang, and Y. Jeong, "A design of unequal power divider with positive and negative group delays," Proceedings of the 45th European Microwave Conference, Sep. 2015.

10. Watkins, G., "A 1 : 8 cascaded Wilkinson power divider," Proceedings of the 44th European Microwave Conference, Oct. 2014.

11. Li, B., X. D. Wu, and W. Wu, "A 10 : 1 unequal Wilkinson power divider using coupled lines with two shorts," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 789-791, Mar. 2009.
doi:10.1109/LMWC.2009.2033506

12. Chen, H. D., T. Y. Zhang, W. Q. Che, and W. J. Feng, "Compact unequal Wilkinson power divider with large power dividing ratio," Proceedings of the 44th European Microwave Conference, Oct. 2014.

13. Yang, C. K. and Y. H. Shih, "An adjustable unequal power divider design," Applied Proceedings of iWEM 2014, Sapporo, Japan, 2014.

14. RGu, A., A. D. Maria, M. Limbach, R. Horn, and A. Reigber, "A 5 way lumped-elements Wilkinson power divider," Applied 7th European Conference on Antennas and Propagation (EuCAP), 2013.

15. Liu, Y., X. Yu, and S. Sun, "Design of a wideband filtering power divider with stub-loaded ring resonator," Applied Computational Electromagnetics Society Symposium (ACES), Sep. 2017.

16. Wu, Y., Y. Liu, Y. Zhang, J. Gao, and H. Zhou, "A dual band unequal Wilkinson power divider without reactive components," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 216-222, Jan. 2009.
doi:10.1109/TMTT.2008.2008981

17. Ravelo, B., O. Maurice, and S. Lalléchère, "Asymmetrical 1 : 2 Y-tree interconnects modelling with Kron-Branin formalism," Electronics Letters, Vol. 52, No. 14, 1215-1216, Jul. 2016.
doi:10.1049/el.2016.1142

18. Ravelo, B., A. Normand, and F. Vurpillot, "Modelling of interbranch coupled 1 : 2 tree microstrip interconnect," ACES Journal, Vol. 33, No. 3, 285-292, Mar. 2018.

19. Ravelo, B., F. Wan, S. Lalléchère, and B. Agnus, "Resistive active balanced power divider design with touchstone and Kron's formalism hybrid model," ACES Journal, Vol. 33, No. 5, 530-536, May 2018.

20. Gao, L., X. Y. Zhang, B. J. Hu, and Q. Xue, "Novel multi-stub loaded resonators and their applications to various bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 62, 1162-1172, 2014.
doi:10.1109/TMTT.2014.2314680