Vol. 115
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-02-17
Experimental Based Blood Glucose Monitoring with a Noninvasive Cylindrical Biosensor Antenna
By
Progress In Electromagnetics Research M, Vol. 115, 71-81, 2023
Abstract
In this work, we have designed and fabricated a non-invasive flexible biosensor with a simple and printable structure for blood glucose monitoring. The proposed sensor has been experimentally proven to monitor blood sugar levels through frequency shifts. A cylindrical design with a coplanar waveguide (CPW) feeding technique has been proposed. A targeted frequency of 2.4 GHz with the best S11 at -22.623 dB and a bandwidth of 323 MHz was obtained. However, after propagating through the finger phantom, the signal is sensitive to the blood glucose levels with a significant frequency shift. The biosensor worked well at 1.55-1.88 GHz, representing a finger, without a phantom in the ISM band of 2.4 GHz. There is a bit of shifted frequency during the biosensor measurement with less than a 1.41% error. The overall size of the biosensor is 50.66 mm x 60.31 mm. The biosensor uses a flexible Dupont Pyralux substrate; thus, the index finger is easy to insert. 25 volunteers were involved in this experimental blood glucose. For this, we use an invasive device to measure the volunteers' blood glucose levels. The invasive measurement results obtained are used as a reference for the blood sugar levels of each sample. The test results using a cylindrical biosensor show a frequency shift at 7.5 MHz for every mg/dl of blood sugar levels, with a sensitivity of 0.43 1/(mg/dL). This frequency shift can be used to observe changes in the concentration of sugar levels in the blood. This flexible sensor is a good alternative biosensor for measuring blood glucose levels due to its low cost and printable structure.
Citation
Yusnita Rahayu, Wahid Nova Nugraha, Teguh Praludi, Mudrik Alaydrus, Anhar, and Huriatul Masdar, "Experimental Based Blood Glucose Monitoring with a Noninvasive Cylindrical Biosensor Antenna," Progress In Electromagnetics Research M, Vol. 115, 71-81, 2023.
doi:10.2528/PIERM22110409
References

1., Indonesia diabetes report 2000{2045, diabetes report 2000-2045, (n.d.) Retrieved Mar. 4, 2022, from https://diabetesatlas.org/data/en/country/94/id.html.
doi:10.1109/TIM.2021.3052011

2., Tenth edition, IDF Diabetes Atlas, (n.d.), Retrieved Mar. 4, 2022, from https://diabetesatlas.org/.

3. Kiani, S., P. Rezaei, and M. Fakhr, "Dual-frequency microwave resonant sensor to detect non-invasive glucose-level changes through the fingertip," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, 2021.
doi:10.1109/TIM.2020.2969590

4. Freer, B. and J. Venkataraman, "Feasibility study for non-invasive blood glucose monitoring," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.
doi:10.1109/TIM.2020.2988329

5. Tiwari, N. K., A. K. Jha, S. P. Singh, and M. J. Akhtar, "Estimation of broadband complex permeability using SIW cavity-based multimodal approach," IEEE Trans. Instrum. Meas., Vol. 69, No. 9, 6571-6581, Sep. 2020.

6. Mirjahanmardi, S. H., A. M. Albishi, and O. M. Ramahi, "Permittivity reconstruction of nondispersive materials using transmitted power at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 69, No. 10, 8270-8278, Oct. 2020.
doi:10.1109/TMTT.2019.2947683

7. Bteich, M., et al., "A non-invasive flexible glucose monitoring sensor using a broadband reject filter," IEEE J. Electromagn., RF Microw. Med. Biol., early access, Sep. 9, 2020.
doi:10.1109/TMTT.2019.2959757

8. Lee, C.-S., B. Bai, Q.-R. Song, Z.-Q. Wang, and G.-F. Li, "Microwave resonator for eye tracking," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 12, 5417-5428, Dec. 2019.
doi:10.1109/JERM.2019.2938876

9. Hamzah, H., A. A. Abduljabar, and A. Porch, "High Q microwave microfluidic sensor using a central gap ring resonator," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 5, 1830-1838, May 2020.
doi:10.1109/TAP.2014.2313139

10. Koutsoupidou, M., H. Cano-Garcia, R. L. Pricci, S. C. Saha, G. Palikaras, E. Kallos, and P. Kosmas, "Study and suppression of multipath signals in a non-invasive millimeter wave transmission glucose-sensing system," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 4, No. 3, 187-193, 2019.
doi:10.1109/LSENS.2021.3109101

11. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissuemimicking phantoms and a patch resonator for evaluating non-invasive monitoring of blood glucose levels," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3064-3075, 2014.
doi:10.1109/JSEN.2021.3107462

12. Omer, A. E., G. Shaker, and S. Safavi-Naeini, "PCA-assisted blood glucose monitoring using metamaterial-inspired sensor," IEEE Sensors Letters, Vol. 5, No. 9, 1-4, 2021.
doi:10.1109/TBCAS.2020.3038589

13. Raj, S., S. Tripathi, G. Upadhyay, S. S. Tripathi, and V. S. Tripathi, "An electromagnetic band gap-based complementary split ring resonator loaded patch antenna for glucose level measurement," IEEE Sensors Journal, Vol. 21, No. 20, 22679-22687, 2021.

14. Omer, A. E., G. Shaker, S. Safavi-Naeini, G. Alquie, F. Deshours, H. Kokabi, and R. M. Shubair, "Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 6, 1407-1420, 2020.

15. Wang, F., "Microwave-based non-invasive blood glucose levels monitoring using flexible UWB antennas," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-4, IET, Apr. 2018.

16. Xiao, X. and Q. Li, "A non-invasive measurement of blood glucose concentration by UWB microwave spectrum," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1040-1043, 2016.
doi:10.1109/APS/URSI47566.2021.9704287

17. Shao, J., et al., "A novel miniature spiral sensor for non-invasive blood glucose monitoring," 2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, 2016.

18. Hanna, J., J. Costantine, R. Kanj, Y. Tawk, A. H. Ramadan, and A. A. Eid, "A vasculature anatomy inspired flexible slot antenna for continuous non-invasive glucose monitoring," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 803-804, Dec. 2021.

19. Kandwal, A., Z. Nie, T. Igbe, J. Li, Y. Liu, L. W. Liu, and Y. Hao, "Surface plasmonic feature microwave sensor with highly confined fields for aqueous-glucose and blood-glucose measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-9, 2020.
doi:10.1109/TIM.2021.3052011

20. Costanzo, S. and V. Cioffi, "Dielectric models for the accurate design of wearable diabetes sensors," 2019 23rd International Conference on Applied Electromagnetics and Communications (ICECOM), 1-3, IEEE, Sep. 2019.

21. Kiani, S., P. Rezaei, and M. Fakhr, "Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, 2021.
doi:10.1002/mop.27515

22. Omkar and W. Yu, "T-shaped patterned microstrip line for noninvasive continuous glucose sensing," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, Oct. 2018.

23. Karacolak, T., E. C. Moreland, and E. Topsakal, "Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring," Microwave and Optical Technology Letters, Vol. 55, No. 5, 1160-1164, 2013.

24. Cordero, J. Camille, et al., "Quantifying blood glucose level using S11 parameters," TENCON 2017 --- 2017 IEEE Region 10 Conference, IEEE, 2017.

25. Turgul, V. and I. Kale, "Characterization of the complex permittivity of glucose/water solutions for non-invasive RF/Microwave blood glucose sensing," 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 1-5, 2016.

26., Dupont Pyralux ap-plus --- CIREXX circuits, (n.d.), Retrieved Mar. 1, 2021, from https://www.cirexx.com/wp-content/uploads/Pyralux_AP-Plus_DataSheet1.pdf.
doi:10.1109/MeMeA.2011.5966704

27., Understanding A1C, Diagnosis, American Diabetes Association, Retrieved May 16, 2022, from https://www.diabetes.org/diabetes/a1c/diagnosis.

28. Hofmann, M., T. Fersch, R.Weigel, G. Fischer, and D. Kissinger, "A novel approach to non-invasive blood glucose measurement based on RF transmission," 2011 IEEE International Symposium on Medical Measurements and Applications, 39-42, May 2011.
doi:10.23919/EuCAP.2017.7928578

29., Radio Frequency Safety, Federal Communications Commission, Jul. 22, 2021, Retrieved Mar. 2, 2021, from https://www.fcc.gov/general/radio-frequency-safety-0.

30. Costanzo, S., "Loss tangent effect on the accurate design of microwave sensors for blood glucose monitoring," 2017 11th European Conference on Antennas and Propagation (EUCAP), 661-663, IEEE, Mar. 2017.
doi:10.1049/el.2016.4327

31. Buford, R. J., E. C. Green, and M. J. McClung, "A microwave frequency sensor for non-invasive blood-glucose measurement," 2008 IEEE Sensors Applications Symposium, 4-7, Feb. 2008.

32. Turgul, V. and I. Kale, "Influence of fingerprints and finger positioning on accuracy of RF blood glucose measurement from fingertips," Electron. Lett., Vol. 53, No. 4, 218-220, Feb. 2017.