1., Indonesia diabetes report 2000{2045, diabetes report 2000-2045, (n.d.) Retrieved Mar. 4, 2022, from https://diabetesatlas.org/data/en/country/94/id.html.
doi:10.1109/TIM.2021.3052011
2., Tenth edition, IDF Diabetes Atlas, (n.d.), Retrieved Mar. 4, 2022, from https://diabetesatlas.org/.
3. Kiani, S., P. Rezaei, and M. Fakhr, "Dual-frequency microwave resonant sensor to detect non-invasive glucose-level changes through the fingertip," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, 2021.
doi:10.1109/TIM.2020.2969590
4. Freer, B. and J. Venkataraman, "Feasibility study for non-invasive blood glucose monitoring," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.
doi:10.1109/TIM.2020.2988329
5. Tiwari, N. K., A. K. Jha, S. P. Singh, and M. J. Akhtar, "Estimation of broadband complex permeability using SIW cavity-based multimodal approach," IEEE Trans. Instrum. Meas., Vol. 69, No. 9, 6571-6581, Sep. 2020.
6. Mirjahanmardi, S. H., A. M. Albishi, and O. M. Ramahi, "Permittivity reconstruction of nondispersive materials using transmitted power at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 69, No. 10, 8270-8278, Oct. 2020.
doi:10.1109/TMTT.2019.2947683
7. Bteich, M., et al., "A non-invasive flexible glucose monitoring sensor using a broadband reject filter," IEEE J. Electromagn., RF Microw. Med. Biol., early access, Sep. 9, 2020.
doi:10.1109/TMTT.2019.2959757
8. Lee, C.-S., B. Bai, Q.-R. Song, Z.-Q. Wang, and G.-F. Li, "Microwave resonator for eye tracking," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 12, 5417-5428, Dec. 2019.
doi:10.1109/JERM.2019.2938876
9. Hamzah, H., A. A. Abduljabar, and A. Porch, "High Q microwave microfluidic sensor using a central gap ring resonator," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 5, 1830-1838, May 2020.
doi:10.1109/TAP.2014.2313139
10. Koutsoupidou, M., H. Cano-Garcia, R. L. Pricci, S. C. Saha, G. Palikaras, E. Kallos, and P. Kosmas, "Study and suppression of multipath signals in a non-invasive millimeter wave transmission glucose-sensing system," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 4, No. 3, 187-193, 2019.
doi:10.1109/LSENS.2021.3109101
11. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissuemimicking phantoms and a patch resonator for evaluating non-invasive monitoring of blood glucose levels," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3064-3075, 2014.
doi:10.1109/JSEN.2021.3107462
12. Omer, A. E., G. Shaker, and S. Safavi-Naeini, "PCA-assisted blood glucose monitoring using metamaterial-inspired sensor," IEEE Sensors Letters, Vol. 5, No. 9, 1-4, 2021.
doi:10.1109/TBCAS.2020.3038589
13. Raj, S., S. Tripathi, G. Upadhyay, S. S. Tripathi, and V. S. Tripathi, "An electromagnetic band gap-based complementary split ring resonator loaded patch antenna for glucose level measurement," IEEE Sensors Journal, Vol. 21, No. 20, 22679-22687, 2021.
14. Omer, A. E., G. Shaker, S. Safavi-Naeini, G. Alquie, F. Deshours, H. Kokabi, and R. M. Shubair, "Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 6, 1407-1420, 2020.
15. Wang, F., "Microwave-based non-invasive blood glucose levels monitoring using flexible UWB antennas," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-4, IET, Apr. 2018.
16. Xiao, X. and Q. Li, "A non-invasive measurement of blood glucose concentration by UWB microwave spectrum," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1040-1043, 2016.
doi:10.1109/APS/URSI47566.2021.9704287
17. Shao, J., et al., "A novel miniature spiral sensor for non-invasive blood glucose monitoring," 2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, 2016.
18. Hanna, J., J. Costantine, R. Kanj, Y. Tawk, A. H. Ramadan, and A. A. Eid, "A vasculature anatomy inspired flexible slot antenna for continuous non-invasive glucose monitoring," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 803-804, Dec. 2021.
19. Kandwal, A., Z. Nie, T. Igbe, J. Li, Y. Liu, L. W. Liu, and Y. Hao, "Surface plasmonic feature microwave sensor with highly confined fields for aqueous-glucose and blood-glucose measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-9, 2020.
doi:10.1109/TIM.2021.3052011
20. Costanzo, S. and V. Cioffi, "Dielectric models for the accurate design of wearable diabetes sensors," 2019 23rd International Conference on Applied Electromagnetics and Communications (ICECOM), 1-3, IEEE, Sep. 2019.
21. Kiani, S., P. Rezaei, and M. Fakhr, "Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, 2021.
doi:10.1002/mop.27515
22. Omkar and W. Yu, "T-shaped patterned microstrip line for noninvasive continuous glucose sensing," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, Oct. 2018.
23. Karacolak, T., E. C. Moreland, and E. Topsakal, "Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring," Microwave and Optical Technology Letters, Vol. 55, No. 5, 1160-1164, 2013.
24. Cordero, J. Camille, et al., "Quantifying blood glucose level using S11 parameters," TENCON 2017 --- 2017 IEEE Region 10 Conference, IEEE, 2017.
25. Turgul, V. and I. Kale, "Characterization of the complex permittivity of glucose/water solutions for non-invasive RF/Microwave blood glucose sensing," 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 1-5, 2016.
26., Dupont Pyralux ap-plus --- CIREXX circuits, (n.d.), Retrieved Mar. 1, 2021, from https://www.cirexx.com/wp-content/uploads/Pyralux_AP-Plus_DataSheet1.pdf.
doi:10.1109/MeMeA.2011.5966704
27., Understanding A1C, Diagnosis, American Diabetes Association, Retrieved May 16, 2022, from https://www.diabetes.org/diabetes/a1c/diagnosis.
28. Hofmann, M., T. Fersch, R.Weigel, G. Fischer, and D. Kissinger, "A novel approach to non-invasive blood glucose measurement based on RF transmission," 2011 IEEE International Symposium on Medical Measurements and Applications, 39-42, May 2011.
doi:10.23919/EuCAP.2017.7928578
29., Radio Frequency Safety, Federal Communications Commission, Jul. 22, 2021, Retrieved Mar. 2, 2021, from https://www.fcc.gov/general/radio-frequency-safety-0.
30. Costanzo, S., "Loss tangent effect on the accurate design of microwave sensors for blood glucose monitoring," 2017 11th European Conference on Antennas and Propagation (EUCAP), 661-663, IEEE, Mar. 2017.
doi:10.1049/el.2016.4327
31. Buford, R. J., E. C. Green, and M. J. McClung, "A microwave frequency sensor for non-invasive blood-glucose measurement," 2008 IEEE Sensors Applications Symposium, 4-7, Feb. 2008.
32. Turgul, V. and I. Kale, "Influence of fingerprints and finger positioning on accuracy of RF blood glucose measurement from fingertips," Electron. Lett., Vol. 53, No. 4, 218-220, Feb. 2017.