Vol. 98
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-05
Fast and Efficient Clutter Cancellation Approach for DVB-T Based Passive Radars
By
Progress In Electromagnetics Research B, Vol. 98, 165-187, 2023
Abstract
In passive radar systems, target echoes are submerged in the sidelobes of the static clutter, which includes multiple reflection echoes from the objects located in the operating environment of the considered system. This undesired part of the collected signals degrades the detector performances. Consequently, the reduction of the static clutter contribution is essential to ensuring an efficient operation of passive radars. In the literature, many algorithms and methods have been proposed for clutter suppression, where a good quality of the received signals is required to ensure an efficient clutter suppression. These methods require a considerable amount of data to operate which increases the complexity and the calculation load of the algorithms. In this paper, an important contribution is brought by simultaneously improving the signals quality and reducing the calculation load in the static clutter suppression process. Since the static clutter can be considered as time-invariant, the proposed approach exploits the specific architecture of the DVB-T signals to provide a noise reduction in the receiving channels by averaging the received signals after being split into symbols. Three different methods are proposed to examine the efficiency of the proposed approach. The performances of the proposed approach are validated through a set of simulations and verified using real data.
Citation
Mohamed Elamine Nouar, Osama Mahfoudia, Azzedine Bouaraba, and Xavier Neyt, "Fast and Efficient Clutter Cancellation Approach for DVB-T Based Passive Radars," Progress In Electromagnetics Research B, Vol. 98, 165-187, 2023.
doi:10.2528/PIERB22110305
References

1. Eaves, J. and E. Reedy, Principales of Modern Radar, Springer Science & Business Media, 2012.

2. Griffiths, H., "Passive bistatic radar," Academic Press Library in Signal Processing, Vol. 2, 813-855, Elsevier, 2014.
doi:10.1016/B978-0-12-396500-4.00016-8

3. Willis, N., Bistatic Radar, SciTech Pub..

4. Cherniakov, M. A., Bistatic Radar: Emerging Technology, John Wiley and Sons, 2008.
doi:10.1002/9780470985755

5. Mahfoudia, O., Dvb-t based bistatic passive radars in noisy environments, Ph.D. Thesis, 2017.

6. Malanowski, M., K. Kulpa, J. Kulpa, P. Samczynski, and J. Misiurewicz, "Analysis of detection range of FM-based passive radar," IET Radar, Sonar & Navigation, Vol. 8, No. 2, 153-159, 2014.
doi:10.1049/iet-rsn.2013.0185

7. Zemmari, R., U. Nickel, and W.-D. Wirth, "GSM passive radar for medium range surveillance," 2009 European Radar Conference (EuRAD), 49-52, IEEE, 2009.

8. Griffiths, H. and C. Baker, "Passive coherent location radar systems. Part 1: Performance prediction," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 152, No. 3, 153-159, 2005.
doi:10.1049/ip-rsn:20045082

9. Malanowski, K. and M. et Kulpa, "Deux methodes de localisation de cible dans un radar passif multistatique," Transactions IEEE sur Les Systemes Aerospatiaux et Electroniques, Vol. 48, No. 1, 572-580, 2012.
doi:10.1109/TAES.2012.6129656

10. Liu, J., H. Li, and B. Himed, "On the performance of the cross-correlation detector for passive radar applications," Signal Processing, Vol. 113, 32-37, 2015.
doi:10.1016/j.sigpro.2015.01.006

11. Liu, J., H. Li, and B. Himed, "Analysis of cross-correlation detector for passive radar applications," 2015 IEEE Radar Conference (RadarCon), 0772-0776, IEEE, 2015.
doi:10.1109/RADAR.2015.7131100

12. Mahfoudia, O., F. Horlin, and X. Neyt, "Performance analysis of the reference signal reconstruction for DVB-T passive radars," Signal Processing, Vol. 158, 26-35, 2019.
doi:10.1016/j.sigpro.2018.12.016

13. Palmer, J. E., H. A. Harms, S. J. Searle, and L. Davis, "DVB-T passive radar signal processing," IEEE Trans. Signal Process, Vol. 61, No. 8, 2116-2126, 2013.
doi:10.1109/TSP.2012.2236324

14. Harms, L. M. D. H. A. and J. Palmer, "Understanding the signal structure in DVB-t signals for passive radar detection," 2010 IEEE Radar Conference, 532-537, 2010.
doi:10.1109/RADAR.2010.5494564

15. Plotka, M., M. Malanowski, P. Samczynski, K. Kulpa, and K. Abratkiewicz, "Passive bistatic radar based on VHF DVB-T signal," 2020 IEEE International Radar Conference (RADAR), 596-600, IEEE, 2020.
doi:10.1109/RADAR42522.2020.9114859

16. Daun, M., U. Nickel, and W. Koch, "Tracking in multistatic passive radar systems using DAB/DVB-T illumination," Signal Processing, Vol. 92, No. 6, 1365-1386, 2012.
doi:10.1016/j.sigpro.2011.09.005

17. Venu, D. and N. K. Rao, "A computational statistics review for low complexity clutter cancellation for passive bi-static radar," Methodologies and Applications of Computational Statistics for Machine Intelligence, 142-163, 2021.

18. Cardinali, R., F. Colone, L. Ferretti, Chiara, and P. Francesco, "Comparison of clutter and multipath cancellation techniques for passive radar," 2007 IEEE Radar Conference, 469-474, IEEE, 2007.
doi:10.1109/RADAR.2007.374262

19. Tang, B., J. Li, Y. Zhang, and J. Tang, "Design of mimo radar waveform covariance matrix for clutter and jamming suppression based on space time adaptive processing," Signal Processing, Vol. 121, 60-69, 2016.
doi:10.1016/j.sigpro.2015.10.033

20. Colone, R. C. F. and P. Lombardo, "Cancellation of clutter and multipath in passive radar using a sequential approach," 2006 IEEE Conference on Radar, 393-399, IEEE, 2006.
doi:10.1109/RADAR.2006.1631830

21. Bolvardi, H., M. Derakhtian, and A. Sheikhi, "Dynamic clutter suppression and multitarget detection in a DVB-T-based passive radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 4, 1812-1825, 2017.
doi:10.1109/TAES.2017.2674138

22. Kulpa, K., "The clean type algorithms for radar signal processing," 2008 Microwaves, Radar and Remote Sensing Symposium, 152-157, IEEE, Sep. 2008.
doi:10.1109/MRRS.2008.4669567

23. Mahfoudia, O., F. Horlin, and X. Neyt, "Pilot-based detection for DVB-T passive coherent location radars," IET Radar, Sonar & Navigation, Vol. 14, No. 6, 845-851, 2020.
doi:10.1049/iet-rsn.2019.0268

24. Attalah, M. A., T. Laroussi, F. Gini, and M. S. Greco, "Fast block lms algorithm for interference cancellation in DVB-T based passive bistatic radar," 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), 1-5, IEEE, 2017.

25. Wang, Y. M. K., R. Tao, and T. Shan, "Adaptive multipath cancellation algorithm in passive radar," 2006 CIE International Conference on Radar, 1-4, IEEE, Oct. 2006.

26. Palmer, J. E. and S. J. Searle, "Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar," 2012 IEEE Radar Conference, 0493-0498, IEEE, May 2012.
doi:10.1109/RADAR.2012.6212191

27. Meller, M. and S. Tujaka, "Processing of noise radar waveforms using block least mean squares algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, 749-761, Jan. 2012.
doi:10.1109/TAES.2012.6129668

28. Xiang, Y. Z. M., X. Lu, and Y. Zhao, "Block nlms cancellation algorithm and its real-time implementation for passive radar," IET International Radar Conference 2013, Institution of Engineering and Technology, 0431-0431, 2013.

29. Del Rey-Maestre, N., M.-P. Jarabo-Amores, J.-L. B`arcena-Humanes, D. Mata-Moya, and P. Gomez-del Hoyo, "ECA filter effects on ground clutter statistics in DVB-T based passive radar," 2018 26th European Signal Processing Conference (EUSIPCO), 1227-1231, IEEE, 2018.

30. Colone, P. L. F., D. W. OHagan, and C. J. Baker, "A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, 698-722, Apr. 2009.
doi:10.1109/TAES.2009.5089551

31. Schwark, C. and D. Cristallini, "Advanced multipath clutter cancellation in OFDM-based passive radar systems," 2016 IEEE Radar Conference (RadarConf), 1-4, IEEE, 2016.

32. Zhao, D., J. Wang, G. Chen, J. Wang, and S. Guo, "Clutter cancellation based on frequency domain analysis in passive bistatic radar," IEEE Access, Vol. 8, 43956-43964, 2020.
doi:10.1109/ACCESS.2020.2977961

33. Schwark , C. and D. Cristallini, "Advanced multipath clutter cancellation in OFDM-based passive radar systems," 2016 IEEE Radar Conference (RadarConf), 1-4, IEEE, May 2016.

34. Mahfoudia, O., F. Horlin, and X. Neyt, "On the static clutter suppression for the DVB-T based passive radars," 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, IEEE, 2017.

35. Berthillot, C., A. Santori, O. Rabaste, D. Poullin, and M. Lesturgie, "DVB-T airborne passive radar: Clutter block rejection," 2019 International Radar Conference (RADAR), 1-5, IEEE, 2019.

36. Palmer, J. E., H. A. Harms, S. J. Searle, and L. Davis, "DVB-T passive radar signal processing," IEEE Transactions on Signal Processing, Vol. 61, No. 8, 2116-2126, 2012.
doi:10.1109/TSP.2012.2236324

37. Ladebusch, U. and C. A. Liss, "Terrestrial DVB (DVB-T): A broadcast technology for stationary portable and mobile use," Proceedings of the IEEE, Vol. 94, No. 1, 183-193, 2006.
doi:10.1109/JPROC.2005.861009

38. Institute, E. T. S., Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, The Institue, 2009.