Vol. 108
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-25
A Wideband Dual-Cavity-Backed Polarization Reconfigurable Antenna Based on Liquid Metal Switches
By
Progress In Electromagnetics Research Letters, Vol. 108, 75-83, 2023
Abstract
This letter presents a wideband polarization reconfigurable antenna based on liquid metal (LM) switches. It consists of single-fed crossed bowtie dipoles, a parasitic element grounded via a metallic post, a dual-cavity-backed reflector and liquid metal switches. The two arms of one dipole are loaded with two symmetrical identical slots, and on top of the slots, two sets of fixed-length movable liquid metal columns filled in polytetrafluoroethylene (PTFE) tubes are attached as switches. The altering between linear polarization (LP) and circular polarization (CP) can be achieved by changing the positions of the liquid metal switches. The dual-cavity structure is applied to obtain unidirectional radiation and enhance the circularly polarized performance. A prototype with overall size of 127 × 127 × 57 mm3 is designed and fabricated. The measured results indicate that the impedance bandwidth (IBM) of the antenna is from 1.06 to 2.46 GHz (79.54%) and the axial ratio bandwidth (ARBW) is from 1.39 to 1.91 GHz (31.52%) for CP state. In addition, the IBW for LP state is from 1.06 to 2.30 GHz (73.81%). Moreover, the peak gains can reach 7.73 dBic in CP state and 9.21 dBi in LP state.
Citation
Yuwei Zhang, Shu Lin, Libo Wang, and Qun Ding, "A Wideband Dual-Cavity-Backed Polarization Reconfigurable Antenna Based on Liquid Metal Switches," Progress In Electromagnetics Research Letters, Vol. 108, 75-83, 2023.
doi:10.2528/PIERL22110302
References

1. Ye, Q. C., J. L. Li, and Y. M. Zhang, "A circular polarization-reconfigurable antenna with enhanced axial ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 2148-1252, 2022.
doi:10.1109/LAWP.2022.3162720

2. Tsai, J. F. and J. S. Row, "Reconfigurable square-ring microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2857-2860, 2013.
doi:10.1109/TAP.2013.2244554

3. Kovitz, J. M., H. Rajagopalan, and Y. Rahmat-Samii, "Design and implementation of broadband MEMS RHCP/LHCP reconfigurable arrays using rotated E-shaped patch elements," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2497-2507, 2015.
doi:10.1109/TAP.2015.2417892

4. Zhang, Y. W., L. Shu, Z. Q. Yang, B. Q. Li, J. X. Cui, and J. L. Jiao, "A pattern- and frequency-reconfigurable antenna using liquid metal," Microwave and Optical Technology Letters, Vol. 63, 1499-1506, 2021.
doi:10.1002/mop.32767

5. Bai, X., S. Lv, and Y. J. Zhu, "A dual-polarized, direction diagram reconfigurable, liquid metal antenna," Progress In Electromagnetics Research Letters, Vol. 106, 57-66, 2022.
doi:10.2528/PIERL22061502

6. Song, L., W. Gao, C. Chui, and Y. Rahmat-Samii, "Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluidics," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 2886-2895, 2019.
doi:10.1109/TAP.2019.2902651

7. Alqurashi, K., J. Kelly, Z. Wang, et al. "Liquid metal bandwidth reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 218-222, 2020.
doi:10.1109/LAWP.2019.2959879

8. Rodrigo, D., L. Jofre, and B. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1796-1802, 2012.
doi:10.1109/TAP.2012.2186235

9. Chen, Z., H. Wong, and J. Kelly, "A polarization-reconfigurable glass dielectric resonator antenna using liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3427-3432, 2019.
doi:10.1109/TAP.2019.2901132

10. Zhang, G. B., R. C. Gough, M. R. Moorefield, et al. "A liquid-metal polarization-pattern-reconfigurable dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 50-53, 2018.
doi:10.1109/LAWP.2017.2773076

11. Xu, C., Y. Wang, J. H. Wu, and Z. P. Wang, "Parasitic circular patch antenna with continuously tunable linear polarization using liquid metal alloy," Microwave and Optical Technology Letters, Vol. 3, 1-7, 2018.

12. Wang, C., J. C. Yeo, H. Chu, C. T. Lim, and Y. X. Guo, "Design of a reconfigurable patch antenna using the movement of liquid metal," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 974-977, 2018.
doi:10.1109/LAWP.2018.2827404

13. Liu, Y., Q. Wang, Y. T. Jia, and P. S. Zhu, "A frequency- and polarization-reconfigurable slot antenna using liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7630-7635, 2020.
doi:10.1109/TAP.2020.2993110

14. Song, L. N., W. R. Gao, and Y. Rahmat-Samii, "3-D printed microfluidics channelizing liquid metal for multipolarization reconfigurable extended E-shaped patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6867-6878, 2020.
doi:10.1109/TAP.2020.2993079

15. Ehrenspeck, H. W., "A new class of medium-size high-efficiency reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 2, 329-332, 1974.
doi:10.1109/TAP.1974.1140771