1. Zhang, X. C., "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301
2. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288
3. Parrott, E. P. J., Y. Sun, and E. P. MacPherson, "Terahertz spectroscopy: Its future role in medical diagnoses," J. Mol. Struct., Vol. 1006, No. 1-3, 66-76, 2011.
doi:10.1016/j.molstruc.2011.05.048
4. Hu, B. B. and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., Vol. 20, No. 16, 1716-1718, 1995.
doi:10.1364/OL.20.001716
5. Zimdars, D., J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, "Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation," AIP Conf. Proc., Vol. 760, 570-577, 2005.
doi:10.1063/1.1916726
6. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644
7. Okatani, T., Y. Sunada, K. Hane, and Y. Kanamori, "Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators," Nanophotonics, Vol. 11, No. 9, 2065-2074, 2022.
doi:10.1515/nanoph-2021-0703
8. Alex-Amor, A., A. Palomares-Caballero, and C. Molero, "3-D metamaterials: Trends on applied designs, computational methods and fabrication techniques," Electronics (MDPI), Vol. 1, 0, 2022.
9. De Oliveira, J. J., L. D. Ribeiro, E. J. da Silva, and R. M. de Souza Batalha, "Design of a free space metamaterial lens based on LC parameters at S-band," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 16, 2210-2223, 2021.
doi:10.1080/09205071.2021.1934904
10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699
11. Grbic, A. and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys., Vol. 98, 043106, 2005.
doi:10.1063/1.2007853
12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," J. Phys. Condens. Lett., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
14. Suzuki, T., M. Sekiya, T. Sato, and Y. Takebayashi, "Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314
15. Gundogdu, T. F., N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, "Negative index short-slab pair and continuous wires metamaterials in the far infrared regime," Optics Express, Vol. 16, No. 12, 9173-9180, 2008.
doi:10.1364/OE.16.009173
16. Wu, D., Y. Liu, L. Chen, R. Ma, C. Liu, C. Xiang, R. Li, and H. Ye, "Broadband mid-infrared dual-band double-negative metamaterial: Realized using a simple geometry," Plasmonics, Vol. 13, 1287-1295, 2018.
doi:10.1007/s11468-017-0632-z
17. Moser, H. O., J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. bin Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express, Vol. 16, 13773-13780, 2008.
doi:10.1364/OE.16.013773
18. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, No. 9, 6736-6744, 2008.
doi:10.1364/OE.16.006736
19. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Appl. Phys. Lett., Vol. 102, 151903, 2013.
doi:10.1063/1.4801648
20. Gu, J., J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express, Vol. 17, 20307, 2009.
doi:10.1364/OE.17.020307
21. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Sci. Rep., Vol. 8, 9843, 2018.
doi:10.1038/s41598-018-28221-3
22. Imhof, C. and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun., Vol. 280, 213-216, 2007.
doi:10.1016/j.optcom.2007.07.033
23. Yeh, T. T., T. Y. Huang, T. Tanaka, and T.-J. Yen, "Demonstration of a three-dimensional negative index medium operated at multiple-angle incidences by monolithic metallic hemispherical shells," Sci. Rep., Vol. 7, 45549, 2017.
doi:10.1038/srep45549
24. Ding, J., S. An, B. Zheng, and H. L. Zhang, "Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths," Adv. Opt. Mater., Vol. 5, No. 10, 1700079, 2017.
doi:10.1002/adom.201700079
25. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126
26. Akmansoy, E. and S. Marcellin, "Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies," EPJ Appl. Metamat., Vol. 5, 2018.
27. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, R121103, 2005.
doi:10.1103/PhysRevB.71.121103
28. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Broadband 3D isotropic negative-index metamaterial based on fishnet structure," Eur. Phys. J. B, Vol. 85, 62, 2012.
doi:10.1140/epjb/e2011-20773-9
29. Engheta, N. and R. W. Ziolkowski, Metamaterials --- Physics and Engineering Explorations, IEEE Press, 2006.
30. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Planoconcave lens by negative refraction of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 13, 9677-9683, 2008.
doi:10.1364/OE.16.009677
31. Vodo, P., P. V. Parimi, W. T. Lu, and S. Sridhar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett., Vol. 86, 201108, 2005.
doi:10.1063/1.1927712
32. Naserpour, M., C. J. Zapata-Rodríguez, C. Díaz-Aviñό, and M. Hashemi, "Metacoatings for wavelength-scale, high-numerical-aperture plano-concave focusing lenses," J. Opt. Soc. Am. B, Vol. 33, 2120-2128, 2016.
doi:10.1364/JOSAB.33.002120
33. Yin, S., Y. Liang, D. Zeng, Y. Tian, P. Zhong, L. Guo, W. Huang, and W. Zhang, "Dynamic switching of coaxial focus based on terahertz meta-lens," Appl. Opt., Vol. 60, 3629-3633, 2021.
doi:10.1364/AO.421906
34. Legaria, S., J. Teniente, S. Kuznetsov, V. Pacheco-Peña, and M. Beruete, "Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: Experimental demonstration," Adv. Photonics Res., Vol. 2, 2000165, 2021.
doi:10.1002/adpr.202000165
35. Fu, Z., "Near-field focusing with subwavelength thickness metalenses via electromagnetic susceptibility models," Optics and Photonics Journal, Vol. 11, 197-209, 2021.
doi:10.4236/opj.2021.117014
36. Costanzo, S., A. Borgia, I. Venneri, and G. Di Massa, "Millimeter-waves structures on benzocyclobutene dielectric substrate," Radioengineering, Vol. 20, 785-789, 2011.
37. Lee, D. H. and W. S. Park, "Extraction of effective permittivity and permeability of periodic metamaterial cells," Microw. Opt. Technol. Lett., Vol. 51, 1824-1830, 2009.
38. Pacheco-Pena, V., B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cıa, "Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial," Appl. Phys. Lett., Vol. 103, 183507, 2013.
doi:10.1063/1.4827876
39. Pendry, B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966
40. Hashemi, M., A. Moazami, M. Naserpour, and C. J. Zapata-Rodríguez, "A broadband multifocal metalens in the terahertz frequency range," Optics Communications, Vol. 370, 306-310, 2016.
doi:10.1016/j.optcom.2016.03.031
41. Mendis, R., M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, "Terahertz artificial dielectric lens," Sci. Rep., Vol. 6, No. 1, 23023, 2016.
doi:10.1038/srep23023
42. Jia, D., Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, "Transmissive terahertz metalens with full phase control based on a dielectric metasurface," Optics Letters, Vol. 42, No. 21, 4494-4497, 2017.
doi:10.1364/OL.42.004494
43. Zhang, H., X. Zhang, Q. Xu, C. Tian, Q.Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Adv. Optical Mater., Vol. 1700773, 2017.
44. Chen, H., Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G., "Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens," Opt. Express, Vol. 26, 29817-29825, 2018.
doi:10.1364/OE.26.029817
45. Jiang, X., H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L.-G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, "All-dielectric metalens for terahertz wave imaging," Opt. Express, Vol. 26, 14132-14142, 2018.
doi:10.1364/OE.26.014132
46. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Science Bulletin, Vol. 64, No. 20, 1525-1531, 2019.
doi:10.1016/j.scib.2019.08.004
47. Zang, X., W. W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Y. Xie, A. V. Balakin, A. P. Shkurinov, Y. M. Zhu, and S. L. Zhuang, "Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging," Adv. Optical Mater., Vol. 8, 1901342, 2020.
doi:10.1002/adom.201901342
48. Maruo, S. and J. Fourkas, "Recent progress in multiphoton microfabrication," Laser & Photon. Rev., Vol. 2, 100-111, 2008.
doi:10.1002/lpor.200710039
49. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, 543-546, 2008.
doi:10.1038/nmat2197
50. Hernandez, D. S. and J. B. Shear, "Mask-directed micro-3D printing," Micro and Nano Technologies, Three-Dimensional Microfabrication Using Two-Photon Polymerization, William Andrew Publishing, 2020.
51. Mao, Y., Z. Chen, J. Zhu, Y. Pan, W. Wu, and J. Xu, "Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 285-288, 2017.
doi:10.1109/MEMSYS.2017.7863397
52. Takano, K., T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer," Appl. Phys. Express, Vol. 3, 016701, 2010.
doi:10.1143/APEX.3.016701
53. Wang, Q., B. Gao, M. Raglione, H. Wang, B. Li, F. Toor, M. A. Arnold, and H. Ding, "Design, fabrication, and modulation of THz bandpass metamaterials," Laser & Photonics Reviews, Vol. 13, 1900071, 2019.
doi:10.1002/lpor.201900071
54. Huang, T.-Y., C.-W. Tseng, T.-T. Yeh, T.-T. Yeh, C.-W. Luo, T. Akalin, and T.-J. Yen, "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015.
doi:10.1038/srep18605