Vol. 176
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-11-28
Commercial-Printed-Circuitry-Compatible Self-Superhydrophobic Antennas Based on Laser Direct Writing
By
Progress In Electromagnetics Research, Vol. 176, 45-53, 2023
Abstract
Antennas are essential devices to build everything connected in the era of information. However, the quality of communications would be degraded with the presence of raindrops on the antenna surface. Additional antiwater radomes may generate radiation loss and dispersive impedance mismatch over a broad frequency range, which is not acceptable for next-generation communication systems integrating multiple bands. Here, we report the first experimental demonstration of self-hydrophobic antennas that cover the bands of 1.7 GHz, 3.5 GHz, and 8.5 GHz through a laser-direct-writing treatment. Experimental results show that the return loss, radiation pattern, and efficiency of self-superhydrophobic antennas can be maintained in the mimicked rainy weather. Furthermore, writing hydrophobic nanostructures on both dielectrics and metals is compatible with commercial printed circuitry techniques widely used in industries. Our technique will augment the laser fabrication technology for specialized electromagnetic devices and serve as a powerful and generalized solution for all-weather wireless communication systems.
Supplementary Information
Citation
Xiao-Liang Ge, Jun-Hao Yang, Hang Ren, Zhi-Jun Qin, Qi-Dai Chen, Dong-Dong Han, Yong-Lai Zhang, Xu Su, and Hong-Bo Sun, "Commercial-Printed-Circuitry-Compatible Self-Superhydrophobic Antennas Based on Laser Direct Writing," Progress In Electromagnetics Research, Vol. 176, 45-53, 2023.
doi:10.2528/PIER22101108
References

1. Vukicevic, A., F. Rachidi, M. Rubinstein, and S. V. Tkachenko, "On the evaluation of antenna-mode currents along transmission lines," IEEE T. Electromagn. C., Vol. 48, 693, 2006.
doi:10.1109/TEMC.2006.884511

2. Qin, Y. F. and D. H. Werner, "Dual-band omnidirectional/unidirectional patch antenna based on multiconductor transmission line theory," IEEE International Symposium on Antennas and Propagation, 17280945, 2017.

3. Morozov, V. M. and V. I. Magro, "Method of analysis of antennas and transmission lines," 6th International Conference on Antenna Theory and Techniques, 9704288, 2007.

4. Frank, G., "An insightful derivation of transmission line equations including electromagnetic field- coupling," 2018 International Symposium on Electromagnetic Compatibility, 18149739, 2018.

5. Gronwald, F., J. Nitsch, and S. Tkachenko, "Generalized transmission line theory as an antenna theory for EMC analysis," Electr. Eng., Vol. 93, 147, 2011.
doi:10.1007/s00202-011-0200-z

6. Lau, B. K., J. B. Andersen, G. Kristensson, and A. F. Molisch, "Impact of matching network on bandwidth of compact antenna arrays," IEEE T. Antenn. Propag., Vol. 54, 3225, 2006.
doi:10.1109/TAP.2006.883984

7. Fei, Y., Y. Fan, B. K. Lau, and J. S. Thompson, "Optimal singleport matching impedance for capacity maximization in compact MIMO arrays," IEEE T. Antenn. Propag., Vol. 56, 3566, 2008.
doi:10.1109/TAP.2008.2005463

8. Tsen, W. F. and H. J. Li, "Uncoupled impedance matching for capacity maximization of compact MIMO arrays," IEEE Antenn. Wirel. Pr., Vol. 8, 1295, 2009.
doi:10.1109/LAWP.2009.2037445

9. Allen, J. C., J. Rockaway, and D. Arceo, Wideband multiport matching phase I: Single-feed multiport antennas, Tech. Rep. SSC/SD-TR-1972, Space and Naval Warfare Systems Center, 2008.

10. Skirelis, J., A. Patlins, N. Kunicina, A. Romanovs, and A. Zabasta, "Wireless sensor networks: Towards resilience against weather-based disruptions," Electr. Control. Commu., Vol. 15, 79, 2019.
doi:10.2478/ecce-2019-0011

11. Li, M., W. J. Lou, and K. Ren, "Data security and privacy in wireless body area networks," IEEE Wirel. Commun., Vol. 17, 51, 2010.
doi:10.1109/MWC.2010.5416350

12. John, F. F., J. J. Ma, and L. Moeller, "Review of weather impact on outdoor terahertz wireless communication links," Nano Commun. Netw., Vol. 10, 13, 2016.
doi:10.1016/j.nancom.2016.07.006

13. Wing, S., "Mobile and wireless communication: Space weather threats, forecasts, and risk management," IT Prof., Vol. 14, 40, 2012.
doi:10.1109/MITP.2012.69

14. Rashed, A. N. Z. and M. M. E. El-Halawany, "Transmission characteristics evaluation under bad weather conditions in optical wireless links with different optical transmission window," Wireless Pers. Commun., Vol. 71, 1577, 2013.
doi:10.1007/s11277-012-0893-y

15. Orta, R., R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE T. Antenn. Propag., Vol. 36, 1707, 1988.
doi:10.1109/8.14392

16. Du, Y. W., Telecommunications Design Method of the Radome, National Defense Industry Press, 1993.

17. Li, P., W. Y. Xu, and L. W. Song, "A novel compensation strategy for the radiation characteristics of large dielectric radomes based on phase modification," IEEE Antenn. Wirel. Pr., Vol. 15, 1044, 2016.
doi:10.1109/LAWP.2015.2491298

18. Li, Y. R., X. Jin, W. Li, J. R. Niu, X. Han, X. F. Yang, W. Y. Wang, T. Lin, and Z. T. Zhu, "Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation," Sci. China Mater., Vol. 65, 1057, 2021.
doi:10.1007/s40843-021-1840-3

19. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE T. Antenn. Propag., Vol. 60, 2740, 2012.
doi:10.1109/TAP.2012.2194640

20. Chen, H. Y., X. Y. Hou, and L. J. Den, "Design of frequency-selective surfaces radome for a planar slotted waveguide antenna," IEEE Antenn. Wirel. Pr., Vol. 8, 1231, 2009.
doi:10.1109/LAWP.2009.2035646

21. Zhou, H., S. B. Qu, B. Q. Lin, and P. Bai, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE T. Antenn. Propag., Vol. 60, 3040, 2012.
doi:10.1109/TAP.2012.2194648

22. Ye, D. X., Z. Wang, Z. Y. Wang, K. W. Xu, B. Zhang, J. T. Huangfu, C. Z. Li, and L. X. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces," IEEE T. Antenn. Propag., Vol. 60, 5164, 2012.
doi:10.1109/TAP.2012.2207686

23. Fang, Y., G. Sun, Y. H. Bi, and H. Zhi, "Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism," Sci. Bull., Vol. 60, 256, 2015.
doi:10.1007/s11434-014-0653-3

24. Wang, D. H., Q. Q. Sun, R. H. A. Ras, and X. Deng, "Design of robust superhydrophobic surfaces," Nature, Vol. 582, 55, 2020.
doi:10.1038/s41586-020-2331-8

25. Zhang, W., Y. L. Wu, J. C. Li, M. M. Zou, and H. Y. Zheng, "UV laser-produced copper micro-mesh with superhydrophobic-oleophilic surface for oil-water separation," J. Mater. Res. Technol., Vol. 15, 5733, 2021.
doi:10.1016/j.jmrt.2021.11.016

26. Liu, X. Q., Y. L. Zhang, Q. K. Li, J. X. Zheng, Y. M. Lu, S. Juodkazis, Q. D. Chen, and H. B. Sun, "Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing," PhotoniX, Vol. 3, 1, 2022.
doi:10.1186/s43074-022-00047-3

27. Lu, Y. M., Y. Z. Duan, X. Q. Liu, Q. D. Chen, and H. B. Sun, "High-quality rapid laser drilling of transparent hard materials," Opt. Lett., Vol. 47, 921, 2022.
doi:10.1364/OL.452530

28. Hua, J. G., S. Y. Liang, Q. D. Chen, S. Juodkazis, and H. B. Sun, "Free-form micro-optics out of crystals: Femtosecond laser 3D sculpturing," Adv. Funct. Mate., Vol. 32, 2200255, 2022.
doi:10.1002/adfm.202200255

29. Liu, Y. Q., J. W. Mao, Z. D. Chen, D. D. Han, Z. Z. Jiao, J. N. Ma, H. B. Jiang, and H. Yang, "Three-dimensional micropatterning of grapheneby femtosecond laser direct writing technology," Opt. Lett., Vol. 45, 1, 2020.
doi:10.1364/OL.45.000001

30. Gao, S., Z. Z. Li, Z. Y. Hu, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Diamond optical vortex generator processed byultraviolet femtosecond laser," Opt. Lett., Vol. 50, 9, 2020.

31. Gao, S., S. Y. Yin, Z. X. Liu, Z. D. Zhang, Z. N. Tian, Q. D. Chen, N. K. Chen, and H. B. Sun, "Narrow-linewidth diamond single-photon sources prepared via femtosecond laser," Appl. Phys. Lett., Vol. 120, 023104, 2021.
doi:10.1063/5.0079335

32. Gao, S., Z. N. Tian, P. Yu, H. Y. Sun, H. Fan, Q. D. Chen, and H. B. Sun, "Deep diamond single-photon sources prepared by a femtosecond laser," Opt. Lett., Vol. 46, 4386, 2021.
doi:10.1364/OL.435799

33. Liu, X. Q., R. Cheng, J. X. Zheng, S. N. Yang, B. X. Wang, B. F. Bai, Q. D. Chen, and H. B. Sun, "Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography," Opt. Lett., Vol. 39, 4690, 2021.

34. Li, Z. Z., X. Y. Li, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses," Opt. Lett., Vol. 46, 520, 2021.
doi:10.1364/OL.414962

35. Mao, Y. H., D. Zhao, C. F. Zhang, K. Huang, and Y. L. Chen, "A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy," Light Sci. Appl., Vol. 10, 22, 2021.
doi:10.1038/s41377-021-00463-3

36. Xu, S., H. Fan, Z. Z. Li, J. G. Hua, Y. H. Yu, L. Wang, Q. D. Chen, and H. B. Sun, "Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements," Opt. Lett., Vol. 46, 536, 2021.
doi:10.1364/OL.413177

37. Liu, X. Q., S. N. Yang, L. Yu, Q. D. Chen, Y. L. Zhang, and H. B. Sun, "Rapid engraving of artificial compound eyes from curved sapphire substrate," Adv. Funct. Mate., Vol. 29, 1900037, 2019.
doi:10.1002/adfm.201900037

38. Liu, H. G., W. X. Lin, and M. H. Hong, "Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications," Light Sci. Appl., Vol. 10, 162, 2021.
doi:10.1038/s41377-021-00596-5

39. Zhao, Y., Y. M. Yang, and H. B. Sun, "Nonlinear meta-optics towards applications," PhotoniX, Vol. 2, 3, 2021.
doi:10.1186/s43074-021-00025-1

40. Lai, P. T., Z. L. Li, W. Wang, J. Qu, L. W. Wu, Z. Zhu, Y. X. Li, J. H. Shi, et al. "Transmissive 2-bit anisotropic coding metasurface," Chin. Phys. B, Vol. 31, 098102, 2022.
doi:10.1088/1674-1056/ac4a6b

41. Dong, G. H., Z. J. Jiang, Y. C. Li, Z. Zhu, Z. H. Liu, J. H. Shi, et al. "Large asymmetric anomalous reflection in bilayer gradient metasurfaces," Opt. Express, Vol. 29, 16796, 2021.

42. Xu, W. X., W. J. Li, Z. Q. Jiang, J. L. Liu, J. H. Shi, et al. "Direction-dependent polarization modulation of Cherenkov diffraction radiation based on metasurfaces," J. Appl. Phys., Vol. 132, 113101, 2022.
doi:10.1063/5.0109322

43. Li, Z. L., W. Wang, S. X. Deng, J. Qu, Y. X. Li, C. Y. Guan, J. H. Shi, et al. "Active beam manipulation and convolution operationin VO2-integrated coding terahertz metasurfaces," Opt. Lett., Vol. 47, 441, 2022.
doi:10.1364/OL.447377