Vol. 114
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-12-13
Cantor-Square Fractal Reconfigurable Circular Patch Antenna with Low Cross-Polarization for X Band Applications
By
Progress In Electromagnetics Research M, Vol. 114, 219-232, 2022
Abstract
This work proposes a novel probe-fed circular patch antenna which has been fractaled and reconfigured to deliver enhanced performance. The circular ground plane is made defected using Cantor-square fractal geometry which reduces the cross-polarization level by about 12 dB. Further, by appropriate positioning of a PIN diode switch in the ground slot, the fractal Circular Microstrip Patch Antenna (CMPA) is enabled to achieve frequency reconfiguration. A prototype of the proposed antenna is fabricated and tested for the assessment of various parameters. The proposed fractal reconfigurable antenna has a peak gain well above 6 dB, high radiation efficiency, and a maximum bandwidth of about 700 MHz in the X-band (8-12 GHz). The present work aims to focus on the huge potential of fractal reconfigurable antennas in modern dynamic wireless communication systems.
Citation
Iqra Masroor, Shadman Aslam, Jamshed Ansari, and Amrees Pandey, "Cantor-Square Fractal Reconfigurable Circular Patch Antenna with Low Cross-Polarization for X Band Applications," Progress In Electromagnetics Research M, Vol. 114, 219-232, 2022.
doi:10.2528/PIERM22093001
References

1. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

2. Singh, I. and V. S. Tripathi, "Micro strip patch antenna and its applications: A survey," International Journal of Computer Applications in Technology, Vol. 2, No. 5, 1595-1599, 2011.

3. Khanna, G. and N. Sharma, "Fractal antenna geometries: A review," International Journal of Computer Applications, Vol. 153, No. 7, 29-32, 2016.
doi:10.5120/ijca2016912106

4. Naqvi, S. A., "Miniaturized triple-band and ultra-wideband (UWB) fractal antennas for UWB applications," Microwave and Optical Technology Letters, Vol. 59, No. 7, 1542-1546, 2017.
doi:10.1002/mop.30582

5. Kordzadeh, A. and F. Hojat-Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2009.
doi:10.2528/PIERB08100501

6. Ali, J., S. Abdulkareem, A. Hammoodi, A. Salim, M. Yassen, M. Hussan, and H. Al-Rizzo, "Cantor fractal-based printed slot antenna for dual-band wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 263-270, 2016.
doi:10.1017/S1759078714001469

7. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 738-741, 2008.
doi:10.1109/LAWP.2008.2002808

8. Ahmed, Z., A. Muhammad, and M. B. Ihsan, "Improving the sidelobe level, return loss and bandwidth of notch-loaded TM30 mode patch via fractal-slot," IEEE Access, Vol. 10, 19917-19924, 2022.
doi:10.1109/ACCESS.2022.3152565

9. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proceedings of the IEEE, Vol. 103, No. 3, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000

10. Chattha, H. T., M. Hanif, X. Yang, Q. H. Abbasi, and I. E. Rana, "Frequency reconfigurable patch antenna for 4G LTE applications," Progress In Electromagnetics Research M, Vol. 69, 1-13, 2018.
doi:10.2528/PIERM18022101

11. Saroj, A. K. and J. A. Ansari, "A reconfigurable multiband rhombic shaped microstrip antenna for wireless smart applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, 2020.
doi:10.1002/mmce.22378

12. Tripathi, S., A. Mohan, and S. Yadav, "A compact frequency-reconfigurable fractal UWB antenna using reconfigurable ground plane," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1800-1808, 2017.
doi:10.1002/mop.30631

13. Yang, S. S., A. A. Kishk, and K. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330

14. Zhang, Y., B.-Z., Wang, X.-S., Yang, and W. Wu, "A fractal Hilbert microstrip antenna with reconfigurable radiation patterns," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 3A, 254-257, 2005.
doi:10.1109/APS.2005.1552228

15. Elwi, T. A., "Remotely controlled reconfigurable antenna for modern 5G networks applications," Microwave and Optical Technology Letters, Vol. 63, No. 8, 2018-2023, 2020.
doi:10.1002/mop.32505

16. Cheng, H.-Y. and J.-S. Row, "A pattern reconfigurable design based on a slotted patch antenna with two feed ports," Microwave and Optical Technology Letters, Vol. 63, No. 12, 3035-3040, 2021.
doi:10.1002/mop.33012

17. Majid, H. A., M. K. A. Rahim, M. R. Hamid, and M. F. Ismail, "Frequency and pattern reconfigurable slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5339-5343, 2014.
doi:10.1109/TAP.2014.2342237

18. Andrenko, A. S., I. V. Ivanchenko, D. I. Ivanchenko, S. Y. Karelin, A. M. Korolev, E. P. Laz'ko, and N. A. Popenko, "Active broad X-band circular patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 529-533, 2006.
doi:10.1109/LAWP.2005.860200

19. Singh, A., S. Vijay, and R. N. Baral, "Low cross-polarization improved-gain rectangular patch antenna," Electronics, Vol. 8, No. 10, 1189, 2019.
doi:10.3390/electronics8101189

20. Zhu, Z., C. Chen, Y. Chen, and W. Wu, "A broadband low cross-polarization u-slot patch antenna array based on differential feed," Progress In Electromagnetics Research C, Vol. 68, 211-219, 2016.
doi:10.2528/PIERC16052404

21. Chen, C., C. Li, Z. Zhu, and W. Wu, "Wideband and low-cross-polarization planar annual ring slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3009-3013, 2017.
doi:10.1109/LAWP.2017.2757963

22. Guo, Y.-X., K.-W. Khoo, L. C. Ong, and K. M. Luk, "Broadband low cross-polarization patch antenna," Radio Science, Vol. 42, No. 05, 1-8, 2007.
doi:10.1029/2006RS003595

23. Ali, T., N. Fatima, and R. C. Biradar, "A miniaturized multiband reconfigurable fractal slot antenna for GPS/GNSS/Bluetooth/WiMAX/X-band applications," AEU --- International Journal of Electronics and Communications, Vol. 94, 234-243, 2018.
doi:10.1016/j.aeue.2018.07.017

24. Tirunagari, A., B. Madhav, C. V. Kumar, P. Sruthi, M. Sahithi, and K. V. Manikanta, "Design of a frequency reconfigurable fractal antenna for Internet of Things (IoT) in vehicular communication," International Journal of Recent Technology and Engineering, Vol. 7, No. 6, 1605-1611, 2019.

25. Madhusudhana, K. and S. P. Hegde, "Reconfigurable fractal microstrip antenna with varactor diode," Global Transitions Proceedings, Vol. 3, No. 1, 183-189, 2022.
doi:10.1016/j.gltp.2022.03.007

26. Hong, K.-D., X. Chen, X. Zhang, L. Zhu, and T. Yuan, "A slot-loaded high-gain circular patch antenna with reconfigurable orthogonal polarizations and low cross polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 511-515, 2022.
doi:10.1109/LAWP.2021.3136680

27. Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley and Sons, 2005.

28. Campbell, M., "5.6 scaling and the Hausdorff dimension," Annennberg Learner: MATHematics Illuminated, 2013.

29. Duvall, P., J. Keesling, and A. Vince, "The Hausdorff dimension of the boundary of a self-similar tile," Journal of the London Mathematical Society, Vol. 61, No. 3, 748-760, 2000.
doi:10.1112/S0024610700008711

30., https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/101-200/SMP1340_Series_200051U.pdf.