Vol. 107
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-09
A Low-Profile Dual-Band Hybrid Coupler with Flexible Frequency Band Ratio
By
Progress In Electromagnetics Research Letters, Vol. 107, 119-124, 2022
Abstract
In this paper, a new method is introduced to design a simple-profile hybrid coupler in two arbitrary frequency bands. The structure is achieved by means of dual-band quarter-wavelength transformers as the arms of a traditional branch line coupler. A prototype of the coupler operating at 0.9 GHz and 2.45 GHz is designed and fabricated to validate the robustness of the method. Comparing simulated with measured results, a good agreement is observed. Moreover, the performance of the coupler in terms of impedance bandwidth and isolation level between the input ports is compared with existing works. Further, the suggested coupler has the simplest profile resulting from the most flexible design process.
Citation
Hassan Naseri, Peyman PourMohammadi, Zahra Mousavirazi, Amjad Iqbal, Guy A. E. Vandenbosch, and Tayeb Denidni, "A Low-Profile Dual-Band Hybrid Coupler with Flexible Frequency Band Ratio," Progress In Electromagnetics Research Letters, Vol. 107, 119-124, 2022.
doi:10.2528/PIERL22092903
References

1. Mousavi, Z., P. Rezaei, M. B. Kakhki, and T. A. Denidni, "Beam-steering antenna array based on a butler matrix feed network with CP capability for satellite application," J. Instrum., Vol. 14, No. 7, 2019, doi: 10.1088/1748-0221/14/07/P07005.
doi:10.1088/1748-0221/14/07/P07005

2. Nasseri, H., M. Bemani, and A. Ghaffarlou, "A new method for arbitrary amplitude distribution generation in 4 × 8 butler matrix," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 3, 249-252, 2020, doi: 10.1109/LMWC.2020.2966929.
doi:10.1109/LMWC.2020.2966929

3. Ren, H., H. Zhang, Y. Jin, Y. Gu, and B. Arigong, "A novel 2-D 3 × 3 Nolen Matrix for 2-D beamforming applications," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4622-4631, 2019, doi: 10.1109/TMTT.2019.2917211.
doi:10.1109/TMTT.2019.2917211

4. Qing, X. M., "Broadband aperture-coupled circularly polarized microstrip antenna fed by a three-stub hybrid coupler," Microw. Opt. Technol. Lett., Vol. 40, No. 1, 38-41, 2004, doi: 10.1002/mop.11280.
doi:10.1002/mop.11280

5. Phani Kumar, K. V. and S. S. Karthikeyan, "Miniaturised quadrature hybrid coupler using modified T-shaped transmission line for wide-range harmonic suppression," IET Microwaves, Antennas Propag., Vol. 10, No. 14, 1522-1527, 2016, doi: 10.1049/iet-map.2016.0301.
doi:10.1049/iet-map.2016.0301

6. Yoon, H. J. and B. W. Min, "Two section wideband 90˚ hybrid coupler using parallel-coupled three-line," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 6, 548-550, 2017, doi: 10.1109/LMWC.2017.2701304.
doi:10.1109/LMWC.2017.2701304

7. Cheng, K. K. M. and F. L. Wong, "A novel approach to the design and implementation of dual-band compact planar 90˚ branch-line coupler," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2458-2463, 2004, doi: 10.1109/TMTT.2004.837151.
doi:10.1109/TMTT.2004.837151

8. Zhang, H. and K. J. Chen, "A stub tapped branch-line coupler for dual-band operations," IEEE Microw. Wirel. Components Lett., Vol. 17, No. 2, 106-108, 2007, doi: 10.1109/LMWC.2006.890330.
doi:10.1109/LMWC.2006.890330

9. Gai, C., Y. C. Jiao, and Y. L. Zhao, "Compact dual-band branch-line coupler with dual transmission lines," IEEE Microw. Wirel. Components Lett., Vol. 26, No. 5, 325-327, 2016, doi: 10.1109/LMWC.2016.2549099.
doi:10.1109/LMWC.2016.2549099

10. Yeung, L. K., "A compact dual-band 90˚ coupler with coupled-line sections," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 9, 2227-2232, 2011, doi: 10.1109/TMTT.2011.2160199.
doi:10.1109/TMTT.2011.2160199

11. Zhao, X., F. Zhu, K. Fan, G. Q. Luo, and K. Wu, "A compact dual-band coupler with coupled microstrip-slotlines," IEEE Microw. Wirel. Components Lett., 1-4, 2021, doi: 10.1109/lmwc.2021.3126698.

12. Jia, L., L. Zhang, and C. Zhang, "A dual-band and wide-band branch-line coupler with a large frequency ratio," Microw. Opt. Technol. Lett., Vol. 63, No. 1, 146-151, 2021, doi: 10.1002/mop.32592.
doi:10.1002/mop.32592

13. Zheng, S. Y., S. H. Yeung, W. S. Chan, K. F. Man, S. H. Leung, and Q. Xue, "Dual-band rectangular patch hybrid coupler," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1721-1728, 2008, doi: 10.1109/TMTT.2008.925234.
doi:10.1109/TMTT.2008.925234

14. Bekasiewicz, A. and S. Koziel, "Miniaturised dual-band branch-line coupler," Electron. Lett., Vol. 51, No. 10, 769-771, 2015, doi: 10.1049/el.2015.0751.
doi:10.1049/el.2015.0751

15. Bckasiewicz, A. and S. Koziel, "Compact dual-band branch-line coupler with enhanced bandwidth for WLAN applications," 2019 Int. Appl. Comput. Electromagn. Soc. Symp. Miami, ACES-Miami 2019, 8-9, 2019.

16. Pozar, D. M., Microwave and Rf Design of Wireless Systems, Wiley, 2000.

17. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-1161, 2003, doi: 10.1109/TMTT.2003.809675.
doi:10.1109/TMTT.2003.809675

18. Islam, R., A. I. Omi, M. A. Maktoomi, C. Zakzewski, and P. Sekhar, "A new coupled-line based dual-band branch-line coupler with port-extensions," Progress In Electromagnetics Research M, Vol. 105, 21-30, 2021.
doi:10.2528/PIERM21081203

19. Liu, Q., Y. Liu, Y. Wu, S. Li, C. Yu, and M. Su, "Broadband substrate integrated coaxial line to CBCPW transition for rat-race couplers and dual-band couplers design," Progress In Electromagnetics Research C, Vol. 35, 147-159, 2012.