1. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for E-band gigabyte point-to-point wireless services," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1261-1264, Oct. 2012.
doi:10.1109/LAWP.2012.2224087
2. Kim, D. Y., Y. Lim, H. S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Trans. Antennas Propag., Vol. 63, 1854-1857, Apr. 2015.
doi:10.1109/TAP.2015.2398129
3. Nasimuddin, K. Esselle, and A. K. Verma, "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," Asia-Pacific Microwave Conference Proceedings, Mar. 2006.
4. Munk, A. B., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Jan. 2005.
5. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microw. Opt. Technol. Lett., Vol. 43, 462-467, Oct. 2004.
doi:10.1002/mop.20502
6. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 47, 1509-1514, Aug. 1999.
doi:10.1109/22.780402
7. Yuehe, G., P. E. Karu, and S. B. Trevor, "The use of simple thin partially reflective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, Oct. 2012.
8. Nikfalazar, M., et al., "Two-dimensional beam-steering phased-array antenna with compact tunable phase shifter based on BST thick films," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 586-588, 2017.
doi:10.1109/LAWP.2016.2591078
9. Aslan, Y., J. Puskely, J. H. J. Janssen, M. Geurts, A. Roederer, and A. Yarovoy, "Thermal-aware synthesis of 5G base station antenna arrays: An overview and a sparsity-based approach," IEEE Access, Vol. 6, 58868-58882, 2018.
doi:10.1109/ACCESS.2018.2873977
10. Abdellatif, A. S. M., High performance integrated beam-steering techniques for millimeter-wave systems, Univ. Waterloo, Waterloo, ON, USA, 2015.
11. Ghasemi, A., et al., "High beam steering in Fabry-Perot leaky-wave antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 261-264, 2013.
doi:10.1109/LAWP.2013.2248052
12. Nakano, H., S. Mitsui, and J. Yamauchi, "Tilted-beam high gain antenna system composed of a patch antenna and periodically arrayed loops," IEEE Trans. Antennas Propag., Vol. 62, 2917-2925, 2014.
doi:10.1109/TAP.2014.2311460
13. Katare, K. K., A. Biswas, and M. J. Akhtar, "Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination," J. Appl. Phys., Vol. 122, 234901, 2017.
doi:10.1063/1.5000999
14. Katare, K. K., A. Biswas, and M. J. Akhtar, "Wideband beam-steerable configuration of metasurface loaded slot antenna," Int. J. RF. Microwave Comput. Aid Eng., e21408, 2018.
doi:10.1002/mmce.21408
15. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. Antennas Propag., Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455
16. Chen, X., M. T. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 16608, Jul. 2004.
doi:10.1103/PhysRevE.70.016608
17. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231
18. Reis, J. R., M. Vala, T. E. Oliveira, T. R. Fernandes, and R. F. S. Caldeirinha, "Metamaterial-inspired flat beamsteering antenna for 5G base stations at 3.6 GHz," Sensors, Vol. 21, 8116, Dec. 2021.
doi:10.3390/s21238116
19. Luo, Y., Q. Zeng, X. Yan, T. Jiang, R. Yang, J. Wang, Y. Wu, Q. Lu, and X. Zhang, "A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna," Microw. Opt. Technol. Lett., Vol. 61, No. 12, 2766-2772, Dec. 2019.
doi:10.1002/mop.31970
20. Kumar, S., L. Kurra, M. Abegaonkar, A. Basu, and S. K. Koul, "Multilayer FSS for gain improvement of a wide-band stacked printed antenna," 2015 International Symposium Antennas Propagation (ISAP), 1-4, Hobart, TAS, 2015.
21. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299
22. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas Propag. Mag., Vol. 58, 35-44, Feb. 2016.
doi:10.1109/MAP.2015.2501235
23. Ma, B., X. M. Yang, T. Q. Li, H. Y. Chenc, H. Hed, Y. W. Chend, A. Line, J. Chenf, and B. J. Wangg, "Gain and directivity enhancement of microstrip antenna loaded with multiple splits octagon-shaped metamaterial superstrate," Int. J. Appl. Electromagn., Vol. 58, 201-213, 2016.
24. Gangwar, D., D. Sushrut, and R. L. Yadava, Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate, Vol. 96, 22389-22399, Springer, Sept. 2017.
25. Aggarwal, I., S. Pandey, and M. R. Tripathy, "A high gain super wideband metamaterial based antenna," J. Microw. Optoelectron. Electromagn. Application, Vol. 20, No. 2, 248-273, Jun. 2021.
doi:10.1590/2179-10742021v20i21147
26. Sumathi, K., S. Lavadiya, P. Yin, J. Parmar, and S. K. Patel, "High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku band wireless network applications," Wireless Networks, Vol. 27, 2131-2146, 2021.
doi:10.1007/s11276-021-02567-5