Vol. 108
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-06
Performance Analysis of a Single Layer X-Band Frequency Selective Surface Based Spatial Filter Implementing Half Jerusalem Cross Slot
By
Progress In Electromagnetics Research Letters, Vol. 108, 25-30, 2023
Abstract
This work proposes and experimentally evaluates a single layer bandpass frequency selective surface (FSS) that resonates at X-band (8-12 GHz). The metal plate of the unit cell has a half-Jerusalem cross slot of size 0.15λ0, where λ0 is the wavelength corresponding to 10 GHz centre frequency. The effects of unit cell parameters on filter response are analyzed through parametric analysis. The results reveal that the proposed bandpass FSS exhibits good polarization stability and angular stability at oblique angles up to 45˚. Furthermore, negligible frequency deviations in both TE and TM polarizations have also been achieved using this structure. A prototype of the bandpass FSS was fabricated on an FR4 substrate to validate the proposed design which includes 10×10 elements in a dimension of 45 mm × 45 mm × 1.6 mm. Measurements show that the bandpass FSS has a fractional bandwidth of 40% centered at 10 GHz from 8 GHz to 12 GHz. The unique feature of the proposed filter is its ability to operate in the whole X band (8-12 GHz) by tuning the filter elements.
Citation
Harikrishna Paik, and Kambham Premchand, "Performance Analysis of a Single Layer X-Band Frequency Selective Surface Based Spatial Filter Implementing Half Jerusalem Cross Slot," Progress In Electromagnetics Research Letters, Vol. 108, 25-30, 2023.
doi:10.2528/PIERL22091602
References

1. Mei, P., G. F. Pedersen, and S. Zhang, "A broadband and FSS-based transmitarray antenna for 5G millimeter-wave applications," IEEE Antenna and Wireless Propagation Letters, Vol. 20, No. 1, 103-107, 2021.
doi:10.1109/LAWP.2020.3042295

2. Deng, Z. H., F. W. Wang, Y. H. Ren, K. Li, and B. J. Gao, "A novel wideband low-RCS reflector by Hexagon polarization rotation surfaces," IEEE Access, Vol. 7, 131527-131533, 2019.
doi:10.1109/ACCESS.2019.2940616

3. Omar, A. A., H. Huang, and Z. Shen, "Absorptive frequency-selective re ection/transmission structures: A review and future perspectives," IEEE Antenna and Propagation Magazine, Vol. 62, No. 4, 62-74, 2020.
doi:10.1109/MAP.2019.2943302

4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256

5. Katoch, K., N. Jaglan, and S. D. Gupta, "A review on frequency selective surfaces and its applications," 2019 International Conference on Signal Processing and Communications (ICSC), 75-81, Noida, India, 2019.

6. Hussein, M., J. Zhou, Y. Huang, and B. A. Juboori, "A low-profile miniaturized second-order bandpass frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2791-2794, 2017.

7. Tamoor, T., F. Ahmed, S. M. Q. A. Shah, T. Hassan, and N. Shoaib, "An FSS based stop band filter for EM shielding application," 2020 IEEE International Symposium on Electromagnetic Compatibility, 978-980, Rome, Italy, 2020.

8. Mahima, P., B. Sangeetha, S. Narayan, and R. U. Nair, "EM design of hybrid-element FSS structure for radome application," 2016 Annual Indian Conference (INDICON 2016), 126-129, Bangalore, India, 2016.

9. Luo, G. Q., W. Yu, Y. Yu, X. H. Zhang, and Z. Liao, "Bandpass absorptive frequency-selective structure using double-sided parallel-strip lines," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 9, 1596-1599, 2020.
doi:10.1109/LAWP.2020.3011507

10. Jin, C., Q. Lv, and R. Mittra, "Dual-polarized frequency selective surface with two transmission zeros based on cascaded ground apertured annular ring resonators," IEEE Transactions on Antennas Propagation, Vol. 66, No. 8, 4077-4085, 2018.
doi:10.1109/TAP.2018.2839898

11. Chen, G. W., S. W. Wong, Y. Li, R. S. Chen, L. Zhang, A. K. Rashid, N. Xie, and L. Zhu, "High roll-off frequency selective surface with quasi-elliptic bandpass response," IEEE Transactions on Antennas Propagation, Vol. 69, No. 9, 5740-5749, 2021.
doi:10.1109/TAP.2021.3060148

12. Xie, J. M., B. Li, Y. P. Lyu, and L. Zhu, "Single- and dual-band high-order bandpass frequency selective surfaces based on aperture-coupled dual-mode patch resonators," IEEE Transactions on Antennas Propagation, Vol. 69, No. 4, 2130-2141, 2021.
doi:10.1109/TAP.2020.3026863

13. Chou, H. H. and G. J. Ke, "Narrow bandpass frequency selective surface with high level of angular stability at Ka-band," IEEE Microwave Wireless Components Letters, Vol. 31, No. 4, 361-364, 2021.
doi:10.1109/LMWC.2021.3054016

14. Yu, W., G. Q. Luo., Y. Yu, W. Cao, Y. Pan, and Z. Shen, "Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1318-1322, 2019.
doi:10.1109/TAP.2018.2883643