Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-28
Broadband Proximity Coupled Millimeter-Wave Microstrip Array Antenna for Automotive Radar Applications
By
Progress In Electromagnetics Research Letters, Vol. 107, 93-101, 2022
Abstract
In this letter, a broadband proximity coupled millimeter-wave microstrip array antenna is presented for automotive radar applications. The antenna array consists of a microstrip line and a series of trapezoidal radiating elements that are periodically arranged on both sides of the microstrip line, at intervals of about half the guided-wavelength. The introduction of the trapezoidal radiating patch enhances the excitation coupling while suppressing out-of-band frequencies, and it has a wider impedance bandwidth than the rectangular patch. In the design of proposed antenna, the normalized resistance of the trapezoidal radiating element is controlled by adjusting the gap with the microstrip line, so that a low-sidelobe level (SLL) can be achieved. Taking the 77-81 GHz frequency band allocated to automotive radar applications as an example, a 1×16 linear array is designed and fabricated. The measured SLL is better than -20 dB. The measured gain of 1×16 array is higher than 15 dBi over the operating frequency range of 77-81 GHz. The 1×16 linear array can achieve an impedance bandwidth of 7.6% (75.6-81.6 GHz).
Citation
Shuo Wang, Dan Zhang, Zhendong Ding, Huiwen Chen, and Shenxiang Yang, "Broadband Proximity Coupled Millimeter-Wave Microstrip Array Antenna for Automotive Radar Applications," Progress In Electromagnetics Research Letters, Vol. 107, 93-101, 2022.
doi:10.2528/PIERL22090605
References

1. Schram, R., A. Williams, and M. van Ratingen, "Implementation of Autonomous Emergency Braking (AEB), the next step in euro NCAP's safety assessment," 2013 Proc. of the Int. Technical Conf. Onthe Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, May 27-30, 2013.

2. Weiss, M., "Microstrip antennas for millimeter waves," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 171-174, January, 1981.
doi:10.1109/TAP.1981.1142547

3. Xu, J., W. Hong, H. Zhang, G. Wang, Y. Yu, and Z. H. Jiang, "An array antenna for both long- and medium-range 77 GHz automotive radar applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7207-7216, December 2017.
doi:10.1109/TAP.2017.2761549

4. Yu, Y., W. Hong, Z. H. Jiang, and H. Zhang, "E-band low-profile, wideband 45 linearly polarized slot-loaded patch and its array for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4364-4369, August 2018.
doi:10.1109/TAP.2018.2840825

5. Li, M. and K. Luk, "Low-cost wideband microstrip antenna array for 60-GHz applications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3012-3018, June 2014.
doi:10.1109/TAP.2014.2311994

6. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, October 2020.
doi:10.1109/TAP.2020.3008668

7. Xu, H., J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, "Planar wideband circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5170-5179, October 2018.
doi:10.1109/TAP.2018.2862345

8. Yuan, T., N. Yuan, and L. Li, "A novel series-fed taper antenna array design," IEEE Antennas Wireless Propag. Lett., Vol. 7, 362-365, 2008.
doi:10.1109/LAWP.2008.928487

9. Khalili, H., K. Mohammadpour-Aghdam, S. Alamdar, and M. Mohammad-Taheri, "Low-cost series-fed microstrip antenna arrays with extremely low sidelobe levels," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4606-4612, September 2018.
doi:10.1109/TAP.2018.2845442

10. Kang, Y., E. Noh, and K. Kim, "Design of traveling-wave series-fed microstrip array with a low sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1395-1399, August 2020.
doi:10.1109/LAWP.2020.2989916

11. Qian, J., H. Zhu, M. Tang, and J. Mao, "A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 7, 1220-1224, July 2021.
doi:10.1109/LAWP.2021.3075887

12. Diawuo, H. A. and Y.-B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 7, 1286-1290, July 2018.
doi:10.1109/LAWP.2018.2842242

13. Dzagbletey, P. A. and Y.-B. Jung, "Stacked microstrip linear array for millimeter-wave 5G baseband communication," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 780-783, May 2018.
doi:10.1109/LAWP.2018.2816258

14. Lee, J.-H., J. M. Lee, K. C. Hwang, D.-W. Seo, D. Shin, and C. Lee, "Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1336-1339, August 2020.
doi:10.1109/LAWP.2020.3001945

15. Liu, D., H. Nakano, X. Qing, and T. Zwick, Handbook of Antenna Technologies, 1389-1413, Springer, Gateway East, Singapore, 2016.

16. Seo, K., "Planar microstrip-to-waveguide transition in millimeter-wave band," Advancement in Microstrip Antennas with Recent Applications, Ch. 11, 249-277, A. Kishk, Ed., InTech, Rijeka, Croatia, 2013.