Vol. 107
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-11
Design of a Plasmonic Metasurface for Refractive Index Sensing of Aqueous Glucose
By
Progress In Electromagnetics Research Letters, Vol. 107, 133-139, 2022
Abstract
In this paper, a new plasmonic absorbing metasurface sensor has been proposed to determine glucose concentrations. Surface Plasmon Resonance (SPR) shift has been used as the indicator of glucose concentration. The sensor employs metal-dielectric-metal configuration along with metal nano-cylinders to provide near unity absorption in the near infrared wavelength range (1800-2200 nm). The absorption frequency shifts when the sensor is surrounded by materials of different refractive indices. The structure has been investigated through Finite Difference Time Domain (FDTD) simulations. The results show reflectance and absorbance peaks with different analyte concentrations. The sensor displays a linear response along with sensitivity and Figure of Merit (FOM) equal to almost 500 nm/RIU and 11.82 RIU-1 respectively. The proposed sensor has potential applications in food and biomedical industries.
Citation
Arslan Asim, and Michael Cada, "Design of a Plasmonic Metasurface for Refractive Index Sensing of Aqueous Glucose," Progress In Electromagnetics Research Letters, Vol. 107, 133-139, 2022.
doi:10.2528/PIERL22090401
References

1. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

3. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796

4. Genevet, P., F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139, 2017.
doi:10.1364/OPTICA.4.000139

5. Li, A., S. Singh, and D. Sievenpiper, "Metasurfaces and their applications," Nanophotonics, Vol. 7, No. 6, 989-1011, 2018.
doi:10.1515/nanoph-2017-0120

6. Chen, T., S. Li, and H. Sun, "Metamaterials application in sensing," Sensors, Vol. 12, No. 3, 2742-2765, 2012.
doi:10.3390/s120302742

7. Zhang, S., et al., "Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective," Front. Opt. Photonics, Vol. 10, No. 1, 265-299, 2021.
doi:10.1515/9783110710687-023

8. Jin, C., Z. Wu, J. H. Molinski, J. Zhou, Y. Ren, and J. X. J. Zhang, "Plasmonic nanosensors for point-of-care biomarker detection," Mater. Today Bio., Vol. 14, 100263, Jan. 2022.
doi:10.1016/j.mtbio.2022.100263

9. Rakhshani, M. R. and M. A. Mansouri-Birjandi, "High sensitivity plasmonic refractive index sensing and its application for human blood group identification," Sens. Actuators B, Chem., Vol. 249, 168-176, Oct. 2017.

10. Kabashin, A. V., et al., "Plasmonic nanorod metamaterials for biosensing," Nat. Mater., Vol. 8, No. 11, 867-871, 2009.
doi:10.1038/nmat2546

11. Alipour, A., A. Farmani, and A. Mir, "SiO2-silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing," Plasmonics, Vol. 15, No. 6, 1935-1942, Dec. 2020.
doi:10.1007/s11468-020-01217-4

12. Vafapour, Z., A. Keshavarz, and H. Ghahraloud, "The potential of terahertz sensing for cancer diagnosis," Heliyon, Vol. 6, No. 12, Art. No. e05623, Dec. 2020.
doi:10.1016/j.heliyon.2020.e05623

13. Tavousi, A., M. R. Rakhshani, and M. A. Mansouri-Birjandi, "High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators," Opt. Commun., Vol. 429, 166-174, Dec. 2018.
doi:10.1016/j.optcom.2018.08.019

14. Son, H., S.-J. Kim, J. Hong, J. Sung, and B. Lee, "Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks," Scientific Reports, Vol. 12, No. 1, Dec. 2022.
doi:10.1038/s41598-021-03975-5

15. Patel, S. K., J. Surve, J. Parmar, K. Ahmed, F. M. Bui, and F. A. Al-Zahrani, "Recent advances in biosensors for detection of COVID-19 and other viruses," IEEE Rev. Biomed. Eng., 1-16, 2022.
doi:10.1109/RBME.2022.3212038

16. Patel, S. K., et al., "Encoding and tuning of THz metasurface-based refractive index sensor with behavior prediction using XGBoost regressor," IEEE Access, 2022.

17. Patel, S. K., J. Surve, J. Parmar, A. Natesan, and V. Katkar, "Graphene-based metasurface refractive index biosensor for hemoglobin detection: Machine learning assisted optimization," IEEE Trans. Nanobioscience , 1-8, 2022.
doi:10.1109/TNB.2022.3201237

18. Hajshahvaladi, L., H. Kaatuzian, M. Danaie, and Y. Karimi, "Design of a highly sensitive tunable plasmonic refractive index sensor based on a ring-shaped nano-resonator," Opt. Quantum Electron., Vol. 54, No. 1, 1-17, 2022.
doi:10.1007/s11082-021-03431-8

19. Hajshahvaladi, L., H. Kaatuzian, and M. Danaie, "Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications," Phys. Lett. Sect. A Gen. At. Solid State Phys., Vol. 420, 127754, 2021.

20. Son, H., S.-J. Kim, J. Hong, J. Sung, and B. Lee, "Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks," Scientific Reports, Vol. 12, No. 1, Dec. 2022.

21. Li, Y., "Plasmonic optics: Theory and applications," Plasmonic Opt. Theory Appl., 2017.

22. Abdulkarim, Y. I., et al., "A review on metamaterial absorbers: Microwave to optical," Front. Phys., Vol. 10, 1-18, Apr. 2022.

23. Patel, S. K., J. Surve, and J. Parmar, "Detection of cancer with graphene metasurface-based highly efficient sensors," Diam. Relat. Mater., Vol. 129, 109367, Sep. 2022.
doi:10.1016/j.diamond.2022.109367

24. Zhong, J., P. Ghosh, and Q. Li, "All-dielectric metasurface refractive index sensor with microfluidics," Journal of Physics: Conference Series, Vol. 1838, No. 1, Mar. 2021.

25. Karthikeyan, M., P. Jayabala, S. Ramachandran, S. S. Dhanabalan, T. Sivanesan, and M. Ponnusamy, "Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing," Nanomaterials, Vol. 12, No. 15, 2693, Aug. 2022.
doi:10.3390/nano12152693

26. Nejat, M. and N. Nozhat, "Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber," IEEE Sensors Journal, Vol. 19, No. 22, 10490-10497, Nov. 2019.
doi:10.1109/JSEN.2019.2931057

27. Hajshahvaladi, L., H. Kaatuzian, and M. Danaie, "A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution," Opt. Commun., Vol. 502, Jan. 2022.

28. Zhang, H., Y. Cheng, and F. Chen, "Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing," Optik (Stuttg.), Vol. 229, Mar. 2021.

29. Vafapour, Z., "Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications," IEEE Trans. Nanobiosci., Vol. 18, No. 4, 622-627, Oct. 2019.
doi:10.1109/TNB.2019.2929802

30. Vafapour, Z., et al., "The potential of refractive index nanobiosensing using a multi-band optically tuned perfect light metamaterial absorber," IEEE Sensors J., early access, Apr. 2, 2021.

31. Al-Naib, I., "Terahertz asymmetric S-shaped complementary metasurface biosensor for glucose concentration," Biosensors (Basel), Vol. 12, No. 8, Aug. 2022.

32. Sun, Y., L. Zhang, H. Shi, S. Cao, S. Yang, and Y. Wu, "Near-infrared plasma cavity metasurface with independently tunable double Fano resonances," Results Phys., Vol. 25, 104204, Jun. 2021.
doi:10.1016/j.rinp.2021.104204