Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-20
Ultrasonic Probing System with Multiple Transmitters and Multiple Receivers with Undersampling
By
Progress In Electromagnetics Research Letters, Vol. 107, 151-157, 2022
Abstract
Wave probing systems are used to obtain 2D or 3D images of objects. According to the nature of the waves used (acoustic-microwave and others), these waves can penetrate the fabrics or barriers that are in their way, so it is possible to photograph hidden objects. A system for ultrasonic wideband probing in air with multiple transmitters and multiple receivers with parallel digitization of signals from the receiving array using undersampling is proposed. Probing at frequencies from 38 kHz to 43 kHz is considered when receiving array signals are digitized at a frequency of 18 kHz. Transmitter and receiver placements have been optimized to minimize artifacts and noise. the transmitting and receiving arrays are located at the same plane. The presented results of the experimental study confirm that the processing of measured signals based on spatially matched filtering makes it possible to visualize scattering objects in the environment, including those hidden behind sound-permeable barriers.
Citation
Amoon Khalil, and Dmitry Y. Sukhanov, "Ultrasonic Probing System with Multiple Transmitters and Multiple Receivers with Undersampling," Progress In Electromagnetics Research Letters, Vol. 107, 151-157, 2022.
doi:10.2528/PIERL22082905
References

1. Velichko, A. and P. D. Wilcox, "An analytical comparison of ultrasonic array imaging algorithms," J. Acoust. Soc. Am., Vol. 127, No. 4, 2377-2384, Apr. 2010.
doi:10.1121/1.3308470

2. Samokrutov, A. A. and V. G. Shevaldykin, "Evaluation of defects in ultrasonic testing by digital focused array technique. The conditions, possibilities, boundaries of the applicability," Diagonistic, Vol. 9, 6-8, 2017.

3. Wang, Q. H. and T. Ivanov, "Acoustic robot navigation using distributed microphone arrays," Information Fusion, Vol. 5, No. 2, 10, Art No. 2, 2004.

4. Zhuge, X. and A. G. Yarovoy, "Three-dimensional near-field MIMO array imaging using range migration techniques," IEEE Trans. Image Process., Vol. 21, No. 6, 3026-3033, Jun. 2012.
doi:10.1109/TIP.2012.2188036

5. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 9, 2001.
doi:10.1109/22.942570

6. Pinchera, D., M. D. Migliore, F. Schettino, M. Lucido, and G. Panariello, "An effective compressed-sensing inspired deterministic algorithm for sparse array synthesis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 11, 2018.
doi:10.1109/TAP.2017.2767621

7. Aboelyazeed, A. S. S., Electronic Microwave Imaging with Planar Multistatic Arrays, M-Logos-Verl, 2014.

8. Goldsmith, P. F., C. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, "Focal plane imaging systems for millimeter wavelengths," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 10, 12, 1993.
doi:10.1109/22.247910

9. Stolt, R., "Migration by Fourier transform techniques," Geophys., Vol. 43, 16, 1978.

10. Foorginejad, A., M. Taheri, and N. Mollayi, "A non-destructive ultrasonic testing approach for measurement and modelling of tensile strength in rubbers," International Journal of Engineering, Vol. 33, No. 12, 2549-2555, 2020.

11. Jamshidi, V. and R. Davarnejad, "Numerical analysis of backscatter radiography for prediction of pipelines situation: Their bursting and casing failure consideration from inside," International Journal of Engineering, Vol. 35, No. 2, 380-386, 2022.
doi:10.5829/IJE.2022.35.02B.14

12. Jamshidi, V. and R. Davarnejad, "Simulation of deposition detection inside wellbore by photon backscatter radiography," International Journal of Engineering, Vol. 33, No. 12, 2450-2454, 2020.

13. Zhuge, X., A. G. Yarovoy, T. G. Savelyev, and L. P. Ligthart, "Modified Kirchhoff migration for UWB MIMO array-based radar imaging," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 6, 2692-2703, 2010.
doi:10.1109/TGRS.2010.2040747

14. Holmes, C., B. W. Drinkwater, and P. D. Wilcox, "Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation," NDT & E International, Vol. 38, No. 8, 701-711, 2005.
doi:10.1016/j.ndteint.2005.04.002

15. Hunter, A. J., B. W. Drinkwater, and P. D. Wilcox, "The wavenumber algorithm for full-matrix imaging using an ultrasonic array," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 55, No. 11, 2450-2462, 2008.
doi:10.1109/TUFFC.952

16. Zhang, J., B. W. Drinkwater, and P. D. Wilcox, "Comparison of ultrasonic array imaging algorithms for nondestructive evaluation," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 60, No. 8, 1732-1745, 2013.
doi:10.1109/TUFFC.2013.2754

17. Portzgen, N., D. Gisolf, and G. Blacquiere, "Inverse wave field extrapolation: A different NDI approach to imaging defects," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 54, No. 1, 118-127, 2007.
doi:10.1109/TUFFC.2007.217

18. Liang, S., Z. Fang, G. Sun, Y. Liu, G. Qu, and Y. Zhang, "Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach," IEEE Access, Vol. 8, 37664-37683, 2020.
doi:10.1109/ACCESS.2020.2976127

19. Sukhanov, D. Y. and M. A. Kalashnikova, "Remote ultrasonic defectoscopy of sound radiating objects through the air," Acoust. Phys., Vol. 60, 304-308, 2014.
doi:10.1134/S1063771014030166