1. Bukhari, S. S., J. Y. Vardaxoglou, and W. Whittow, "A metasurfaces review: Definitions and applications," Appl. Sci., Vol. 9, No. 13, 2727, 2019.
doi:10.3390/app9132727
2. Glybovski, S. B., S. A. Tretyako, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Phy. Rep., No. 634, 1-72, 2016.
doi:10.1016/j.physrep.2016.04.004
3. Felbacq, D. and G. Boucitte, Metamaterials Modelling and Design, Pan Standford, 2017.
doi:10.1201/9781315365008
4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323
5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888
6. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-3, 2018.
7. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2790-2800, April 2022.
doi:10.1109/TAP.2021.3138256
8. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Sci. Rep., Vol. 11, Article number: 9421, 2021.
doi:10.1038/s41598-021-88547-3
9. He, Q., S. Sun, and L. Zhou, "Tunable/reconfigurable metasurfaces: Physics and applications," Research, Vol. 2019, Article ID 1849272, 2019.
10. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. G. Miab, H. N. Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1016/j.matdes.2022.110855
11. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," Int. J. RF. Microw. C. E., Vol. 32, No. 3, 23033, 2022.
12. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
doi:10.1080/09205071.2019.1688693
13. Paul, G. S., K. Mandal, and A. Lalbakhsh, "Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings," AEU --- Int. J. Electron. Commun., Vol. 132, 153630, 2020.
14. Markovich, H., D. Filonov, I. Shishkin, and P. Ginzburg, "Bifocal fresnel lens based on the polarization-sensitive metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2650-2654, 2018.
doi:10.1109/TAP.2018.2811717
15. Zhao, M., S. Zhu, H. Huang, D. Hu, X. Chen, J. Chen, and A. Zhang, "Frequency-polarization sensitive metasurface antenna for coincidence imaging," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 7, 1274-1278, 2021.
doi:10.1109/LAWP.2021.3077556
16. Peng, C., K. Ou, G. Li, Z. Zhao, X. Li, C. Liu, X. Li, X. Chen, and W. Lu, "Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared," Opt. Express, Vol. 29, No. 9, 12893-12902, 2021.
doi:10.1364/OE.422519
17. Yu, F., G. Q. He, X. X. Yang, J. Du, and S. Gao, "Polarization-insensitive metasurface for harvesting electromagnetic energy with high efficiency and frequency stability over wide range of incidence angles," App. Sci., Vol. 10, No. 22, 8047, 2020.
doi:10.3390/app10228047
18. Tirkey, M. M. and N. Gupta, "A novel ultrathin checkerboard inspired ultrawideband metasurface absorber," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 66-74, 2021.
doi:10.1109/TEMC.2021.3091767
19. Shukoor, M. A., S. Dey, and S. K. Koul, "A simple polarization-insensitive and wide angular stable circular ring based undeca-band absorber for EMI/EMC applications," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1025-1034, 2021.
doi:10.1109/TEMC.2021.3075730
20. Xu, H. X., S. Wang, C. Wang, M. Wang, Y. Wang, and Q. Peng, "Polarization-insensitive metalens and its applications to reflectarrays with polarization diversity," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 1895-1905, 2021.
doi:10.1109/TAP.2021.3112553
21. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Status Solidi B, Vol. 244, No. 4, 1170-1175, 2007.
doi:10.1002/pssb.200674501
22. Jaksic, Z., S. Vukovic, J. Matovic, and D.Tanaslovic, "Negative refractive index metasurfaces for enhanced biosensing," Materials, Vol. 4, No. 1, 1-36, 2010.
doi:10.3390/ma4010001
23. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, No. 22, 18131-18144, 2018.
doi:10.1364/OE.16.018131
24. Wahidi, M. S., M. I. Khan, F. A. Tahir, and H. Rmili, "Multifunctional single layer metasurface based on hexagonal split ring resonator," IEEE Access, Vol. 8, 28054-28063, 2020.
25. Zhong, H. T., X. X. Yang, C. Tan, and K. Yu, "Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting," Appl. Phys. Lett., Vol. 109, No. 25, 253904, 2016.
doi:10.1063/1.4973282
26. Miyamaru, F., S. Kubota, T. Nakanishi, S. Kawashima, N. Sato, M. Kitano, and M. W. Takeda, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Appl. Phys. Lett., Vol. 101, No. 5, 051112, 2012.
doi:10.1063/1.4739945
27. Assimonis, S. D. and V. Fusco, "Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional iinkjet-printing technology," Sci. Rep., Vol. 9, No. 1, 1-15, 2019.
doi:10.1038/s41598-019-48761-6
28. Bhope, V. and A. Harish, "A novel bandstop frequency selective surface using coupled split ring resonators," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1745-1747, IEEE, 2019.
doi:10.1109/APMC46564.2019.9038271
29. Mol, V. L. and C. Aanandan, "An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability," J. Phys. Commun., Vol. 1, No. 1, 015003, 2017.
doi:10.1088/2399-6528/aa80c1
30. Ghaneizadeh, A., M. Joodaki, J. Borcsok, A. Golmakani, and K. Mafinezhad, "Analysis, design, and implementation of a new extremely ultrathin 2-D-isotropic flexible energy harvester using symmetric patch FSS," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 6, 2108-2115, 2020.
doi:10.1109/TMTT.2020.2982386
31. Jilani, S. F., O. P. Falade, T. Wildsmith, P. Reip, and A. Alomainy, "A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications," App. Sci., Vol. 9, No. 5, 945, 2019.
doi:10.3390/app9050945
32. Yong, W. Y., S. K. A. Rahim, M. Himdi, F. C. Seman, D. L. Suong, M. R. Ramli, and H. A. Elmobarak, "Flexible convoluted ring shaped FSS for X-band screening application," IEEE Access, Vol. 6, 11657-11665, 2018.
doi:10.1109/ACCESS.2018.2804091