1. Yao, G., "Research on dynamic modulation characteristics of terahertz metamaterials based on graphene plasma induced transparency,", Shanghai Jiaotong University, Shanghai, 2017 (in Chinese).
doi:10.7567/1882-0786/ab25c4
2. Dai, L. L., Y. P. Zhang, H. Y. Zhang, and J. F. O'Hara, "Broadband tunable terahertz cross-polarization converter based on Dirac semimetals," Appl. Phys. Exp., Vol. 12, No. 7, 075003, 2019.
doi:10.1016/B978-0-323-90508-4.00004-6
3. Lalbakhsh, A., R. B. Simorangkir, N. Bayat-Makou, A. A. Kishk, and K. P. Esselle, "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 19-38, 2022.
doi:10.1002/mmce.23033
4. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, 2022.
doi:10.1016/j.matdes.2022.110855
5. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. Ghaffari-Miab, H. Noori Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1038/s41598-021-88547-3
6. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Scientific Reports, Vol. 11, No. 1, 1-9, 2021.
doi:10.1021/nl902621d
7. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Letters, Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1088/1361-6463/aadb7f
8. Liu, T. T., H. X. Wang, Y. Liu, L. S. Xiao, C. B. Zhou, Y. B. Liu, C. Xu, and S. Y. Xiao, "Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial," J. Phys. D: Appl. Phys., Vol. 51, 415105, 2018.
doi:10.1016/j.optlastec.2013.01.007
9. Zhang, Y. D., J. Li, H. Y. Li, C. B. Yao, and P. Yuan, "Plasmon-induced-transparency in subwavelength structures," Optics and Laser Technology, Vol. 49, 202-208, 2013.
doi:10.1063/1.3653242
10. Wu, J. B., B. B. Jin, J. Wan, L. J. Liang, Y. G. Zhang, T. Jia, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Superconducting terahertz metamaterials mimicking electromagnetically induced transparency," Applied Physics Letters, Vol. 99, No. 16, 161113, 2011.
doi:10.1016/j.bios.2021.113241
11. Zhang, J., N. Mu, L. H. Liu, J. H. Xie, H. Feng, J. Q. Yao, T. A. Chen, and W. R. Zhu, "Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency," Biosensors and Bioelectronics, Vol. 185, 113241, 2021.
doi:10.1016/j.bios.2018.11.014
12. Yan, X., M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, "The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells," Biosensors and Bioelectronics, Vol. 126, 485-492, 2019.
doi:10.2528/PIERM19122101
13. Zhang, Y. G., C. Li, and X. Tu, "Tuning electromagnetically induced transparency of superconducting metamaterial analyzed with equivalent circuit approach," Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020.
doi:10.1126/science.aab2051
14. Rodrigo, D., O. Limaj, D. Janner, D. Etezadi, J. G. de Abajo, V. Pruneri, and H. Altug, "Mid-infrared plasmonic biosensing with graphene," Science, Vol. 349, No. 6244, 165-168, 2015.
doi:10.1364/OME.9.001562
15. Wang, T. L., M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, "Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies," Opt. Mater. Express, Vol. 9, 1562-1576, 2019.
doi:10.1021/acsphotonics.7b01551
16. Kim, T. T., H. D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, "Electrically tunable slow light using graphene metamaterials," ACS Photonics: Acsphotonics, Vol. 5, No. 5, 1800-1807, 2018.
doi:10.1002/advs.202070080
17. Hu, Y. Z., J. You, M. Y. Tong, X. Zheng, Z. J. Xu, X. G. Cheng, and T. Jiang, "Metaphotonic devices: Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices," Advanced Science, Vol. 7, No. 14, 2070080, 2020.
doi:10.1364/OE.19.021652
18. Jin, X. R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652, 2011.
doi:10.1109/JLT.2018.2836904
19. Peng, L., F. X. Li, X. Jiang, and S. M. Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene," Journal of Light Wave Technology, Vol. 36, No. 19, 4250-4258, 2018.
doi:10.1364/OE.24.011466
20. Sun, C., J. N. Si, Z. W. Dong, and X. X. Deng, "Tunable multispectral plasmon induced transparency based on graphene metamaterials," Optics Express, Vol. 24, No. 11, 11466, 2016.
doi:10.1016/j.matdes.2022.110920
21. Esfandiari, M., A. Lalbakhsh, P. Shehni, S. Jarchi, M. Miab, H. Mahtaj, S. Reisenfeld, M. Alibakhshikenari, S. Kozieł, and S. Szczepański, "Recent and emerging applications of graphene-based metamaterials in electromagnetics," Materials & Design, Vol. 221, 110920, 2022.
doi:10.1364/OE.21.028438
22. Shi, X., D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Optics Express, Vol. 21, No. 23, 28438-28443, 2013.
doi:10.1063/1.4831776
23. Cheng, H., S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, "Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips," Applied Physics Letters, Vol. 103, No. 20, 36, 2013.
doi:10.1364/PRJ.6.000692
24. Xia, S. X., Z. Xiang, L. L. Wang, and S. G. Wen, "Plasmonically induced transparency in double-layered graphene nanoribbons," Photonics Research, Vol. 6, No. 7, 31-41, 2018.
doi:10.1016/j.rinp.2021.104040
25. Zheng, S. Q., Q. X. Zhao, L. Peng, and X. Jiang, "Tunable plasmon induced transparency with high transmittance in a two-layer graphene structure," Results in Physics, Vol. 7, 104040, 2021.
doi:10.3724/SP.J.1249.2021.05536
26. Zhao, Q. X., M. S. Ma, and S. Q. Zheng, "Plasma induced transparency based on graphene super surface," Journal of Shenzhen University Science and Engineering, Vol. 38, No. 5, 536-542, 2021.
doi:10.1016/j.xcrp.2022.100939
27. Sun, T. Y., J. Tu, Z. P. Zhou, R. Sun, X. W. Zhang, H. O. Li, Z. M. Xu, Y. Peng, X. P. Liu, P. H. Wang, and Z. C. Wang, "Resistive switching of self-assembly stacked h-BN polycrystal film," Cell Reports Physical Science, Vol. 3, 100939, 2022.
doi:10.1016/j.matdes.2020.108960
28. Sun, T. Y., Y. Liu, J. Tu, Z. P. Zhou, L. Cao, X. P. Liu, H. O. Li, Q. Li, T. Fu, F. B. Zhang, and Z. Q. Yu, "Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization," Materials & Design, Vol. 194, 108960, 2020.
29. Gong, Y. M., F. R. Hu, M. Z. Jiang, L. H. Zhang, Y. C. Zou, G. B. Jiang, and Y. C. Liu, "Terahertz binary coder based on graphene metasurface," Carbon, Vol. 184, No. 1, 2021.
doi:10.1364/OE.390835
30. Xu, K. D., J. X. Li, A. X. Zhang, and Q. Chen, "Tunable multi-band terahertz absorber using asingle-layer square graphene ring structure with T-shaped graphene strips," Optics Express, Vol. 28, No. 8, 11482-11492, 2020.
31. Sun, C., Z. W. Dong, J. G. Si, and X. X. Deng, "Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies," Optics Express, Vol. 25, No. 1, 2017.
doi:10.1088/1361-6463/ac5e1a
32. Zheng, S. Q., M. S. Ma, Y. Lv, T. Fu, L. Peng, and Q. X. Zhao, "Dual-band electromagnetically induced transparent metamaterial with slow light effect and energy storage," Journal of Physics D: Applied Physics, Vol. 55, No. 25, 255103, 2022.
doi:10.1038/nmat2495
33. Liu, N., L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Materials, Vol. 8, No. 9, 758-762, 2009.
doi:10.1021/nl200197j
34. Artar, A., A. A. Yanik, and H. Altug, "Multispectral plasmon induced transparency in coupled meta-atoms," Nano. Letters, Vol. 11, No. 4, 1685-1689, 2011.
doi:10.1088/1674-1056/28/2/026102
35. Jia, W., P. W. Ren, Y. C. Tian, and C. Z. Fan, "Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials," Chin. Phys. B., Vol. 28, No. 2, 026102, 2019.
doi:10.1016/j.optcom.2021.126949
36. Kumar, D., K. M. Devi, R. Kumar, and D. R. Chowdhury, "Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces," Optics Communications, Vol. 491, 126949, 2021.
doi:10.1007/s11082-021-03311-1
37. Li, H. M. and Y. C. Zhang, "A low-loss, polarization-insensitive and tunable electromagnetically induced transparency," Optical and Quantum Electronics, Vol. 53, 643, 2021.