Vol. 114
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-17
Tunable Dual-Band and Polarization-Insensitive Electromagnetic Induced Transparency-Like Window Based on Graphene Metamaterials
By
Progress In Electromagnetics Research M, Vol. 114, 91-101, 2022
Abstract
In this paper, a polarization-insensitive and dual-band Electromagnetic Induced Transparency-Like (EIT-Like) metamaterial is proposed, which is made of a cross-shaped graphene structure. Due to the mutual coupling between intralayer and interlayer, two high transmission windows can be obtained in different frequency bands. The sensibilities located at the two transmission peaks are calculated as 0.385 THz/RIU and 0.979 THz/RIU respectively. In addition, the maximum group index of 174.5 is obtained. By adjusting the Fermi level of graphene, the transmission and group index could be modulated independently. The characteristics make the proposed metamaterials possess the potential as a tool for biological detection, slow light technology, and filters in THz region.
Citation
Qixiang Zhao, Yanyan Liang, Mengshi Ma, Hang Mo, Lin Peng, You Lv, and Shuquan Zheng, "Tunable Dual-Band and Polarization-Insensitive Electromagnetic Induced Transparency-Like Window Based on Graphene Metamaterials," Progress In Electromagnetics Research M, Vol. 114, 91-101, 2022.
doi:10.2528/PIERM22082406
References

1. Yao, G., "Research on dynamic modulation characteristics of terahertz metamaterials based on graphene plasma induced transparency,", Shanghai Jiaotong University, Shanghai, 2017 (in Chinese).
doi:10.7567/1882-0786/ab25c4

2. Dai, L. L., Y. P. Zhang, H. Y. Zhang, and J. F. O'Hara, "Broadband tunable terahertz cross-polarization converter based on Dirac semimetals," Appl. Phys. Exp., Vol. 12, No. 7, 075003, 2019.
doi:10.1016/B978-0-323-90508-4.00004-6

3. Lalbakhsh, A., R. B. Simorangkir, N. Bayat-Makou, A. A. Kishk, and K. P. Esselle, "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 19-38, 2022.
doi:10.1002/mmce.23033

4. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, 2022.
doi:10.1016/j.matdes.2022.110855

5. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. Ghaffari-Miab, H. Noori Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1038/s41598-021-88547-3

6. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Scientific Reports, Vol. 11, No. 1, 1-9, 2021.
doi:10.1021/nl902621d

7. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Letters, Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1088/1361-6463/aadb7f

8. Liu, T. T., H. X. Wang, Y. Liu, L. S. Xiao, C. B. Zhou, Y. B. Liu, C. Xu, and S. Y. Xiao, "Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial," J. Phys. D: Appl. Phys., Vol. 51, 415105, 2018.
doi:10.1016/j.optlastec.2013.01.007

9. Zhang, Y. D., J. Li, H. Y. Li, C. B. Yao, and P. Yuan, "Plasmon-induced-transparency in subwavelength structures," Optics and Laser Technology, Vol. 49, 202-208, 2013.
doi:10.1063/1.3653242

10. Wu, J. B., B. B. Jin, J. Wan, L. J. Liang, Y. G. Zhang, T. Jia, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Superconducting terahertz metamaterials mimicking electromagnetically induced transparency," Applied Physics Letters, Vol. 99, No. 16, 161113, 2011.
doi:10.1016/j.bios.2021.113241

11. Zhang, J., N. Mu, L. H. Liu, J. H. Xie, H. Feng, J. Q. Yao, T. A. Chen, and W. R. Zhu, "Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency," Biosensors and Bioelectronics, Vol. 185, 113241, 2021.
doi:10.1016/j.bios.2018.11.014

12. Yan, X., M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, "The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells," Biosensors and Bioelectronics, Vol. 126, 485-492, 2019.
doi:10.2528/PIERM19122101

13. Zhang, Y. G., C. Li, and X. Tu, "Tuning electromagnetically induced transparency of superconducting metamaterial analyzed with equivalent circuit approach," Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020.
doi:10.1126/science.aab2051

14. Rodrigo, D., O. Limaj, D. Janner, D. Etezadi, J. G. de Abajo, V. Pruneri, and H. Altug, "Mid-infrared plasmonic biosensing with graphene," Science, Vol. 349, No. 6244, 165-168, 2015.
doi:10.1364/OME.9.001562

15. Wang, T. L., M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, "Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies," Opt. Mater. Express, Vol. 9, 1562-1576, 2019.
doi:10.1021/acsphotonics.7b01551

16. Kim, T. T., H. D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, "Electrically tunable slow light using graphene metamaterials," ACS Photonics: Acsphotonics, Vol. 5, No. 5, 1800-1807, 2018.
doi:10.1002/advs.202070080

17. Hu, Y. Z., J. You, M. Y. Tong, X. Zheng, Z. J. Xu, X. G. Cheng, and T. Jiang, "Metaphotonic devices: Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices," Advanced Science, Vol. 7, No. 14, 2070080, 2020.
doi:10.1364/OE.19.021652

18. Jin, X. R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652, 2011.
doi:10.1109/JLT.2018.2836904

19. Peng, L., F. X. Li, X. Jiang, and S. M. Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene," Journal of Light Wave Technology, Vol. 36, No. 19, 4250-4258, 2018.
doi:10.1364/OE.24.011466

20. Sun, C., J. N. Si, Z. W. Dong, and X. X. Deng, "Tunable multispectral plasmon induced transparency based on graphene metamaterials," Optics Express, Vol. 24, No. 11, 11466, 2016.
doi:10.1016/j.matdes.2022.110920

21. Esfandiari, M., A. Lalbakhsh, P. Shehni, S. Jarchi, M. Miab, H. Mahtaj, S. Reisenfeld, M. Alibakhshikenari, S. Kozieł, and S. Szczepański, "Recent and emerging applications of graphene-based metamaterials in electromagnetics," Materials & Design, Vol. 221, 110920, 2022.
doi:10.1364/OE.21.028438

22. Shi, X., D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Optics Express, Vol. 21, No. 23, 28438-28443, 2013.
doi:10.1063/1.4831776

23. Cheng, H., S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, "Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips," Applied Physics Letters, Vol. 103, No. 20, 36, 2013.
doi:10.1364/PRJ.6.000692

24. Xia, S. X., Z. Xiang, L. L. Wang, and S. G. Wen, "Plasmonically induced transparency in double-layered graphene nanoribbons," Photonics Research, Vol. 6, No. 7, 31-41, 2018.
doi:10.1016/j.rinp.2021.104040

25. Zheng, S. Q., Q. X. Zhao, L. Peng, and X. Jiang, "Tunable plasmon induced transparency with high transmittance in a two-layer graphene structure," Results in Physics, Vol. 7, 104040, 2021.
doi:10.3724/SP.J.1249.2021.05536

26. Zhao, Q. X., M. S. Ma, and S. Q. Zheng, "Plasma induced transparency based on graphene super surface," Journal of Shenzhen University Science and Engineering, Vol. 38, No. 5, 536-542, 2021.
doi:10.1016/j.xcrp.2022.100939

27. Sun, T. Y., J. Tu, Z. P. Zhou, R. Sun, X. W. Zhang, H. O. Li, Z. M. Xu, Y. Peng, X. P. Liu, P. H. Wang, and Z. C. Wang, "Resistive switching of self-assembly stacked h-BN polycrystal film," Cell Reports Physical Science, Vol. 3, 100939, 2022.
doi:10.1016/j.matdes.2020.108960

28. Sun, T. Y., Y. Liu, J. Tu, Z. P. Zhou, L. Cao, X. P. Liu, H. O. Li, Q. Li, T. Fu, F. B. Zhang, and Z. Q. Yu, "Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization," Materials & Design, Vol. 194, 108960, 2020.

29. Gong, Y. M., F. R. Hu, M. Z. Jiang, L. H. Zhang, Y. C. Zou, G. B. Jiang, and Y. C. Liu, "Terahertz binary coder based on graphene metasurface," Carbon, Vol. 184, No. 1, 2021.
doi:10.1364/OE.390835

30. Xu, K. D., J. X. Li, A. X. Zhang, and Q. Chen, "Tunable multi-band terahertz absorber using asingle-layer square graphene ring structure with T-shaped graphene strips," Optics Express, Vol. 28, No. 8, 11482-11492, 2020.

31. Sun, C., Z. W. Dong, J. G. Si, and X. X. Deng, "Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies," Optics Express, Vol. 25, No. 1, 2017.
doi:10.1088/1361-6463/ac5e1a

32. Zheng, S. Q., M. S. Ma, Y. Lv, T. Fu, L. Peng, and Q. X. Zhao, "Dual-band electromagnetically induced transparent metamaterial with slow light effect and energy storage," Journal of Physics D: Applied Physics, Vol. 55, No. 25, 255103, 2022.
doi:10.1038/nmat2495

33. Liu, N., L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Materials, Vol. 8, No. 9, 758-762, 2009.
doi:10.1021/nl200197j

34. Artar, A., A. A. Yanik, and H. Altug, "Multispectral plasmon induced transparency in coupled meta-atoms," Nano. Letters, Vol. 11, No. 4, 1685-1689, 2011.
doi:10.1088/1674-1056/28/2/026102

35. Jia, W., P. W. Ren, Y. C. Tian, and C. Z. Fan, "Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials," Chin. Phys. B., Vol. 28, No. 2, 026102, 2019.
doi:10.1016/j.optcom.2021.126949

36. Kumar, D., K. M. Devi, R. Kumar, and D. R. Chowdhury, "Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces," Optics Communications, Vol. 491, 126949, 2021.
doi:10.1007/s11082-021-03311-1

37. Li, H. M. and Y. C. Zhang, "A low-loss, polarization-insensitive and tunable electromagnetically induced transparency," Optical and Quantum Electronics, Vol. 53, 643, 2021.