Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-17
Power Absorption of 3D Printed Layers on a Microstrip Line
By
Progress In Electromagnetics Research Letters, Vol. 107, 27-32, 2022
Abstract
Power-absorbing layers on a microstrip line prepared by 3D printing are investigated in this study. Polylactic acid (PLA) with added carbon is used in the 3D printing process for the preparation of the power-absorbing layers. The S-parameters of the 3D-printed layers are measured using a vector network analyzer. The effect of the layer thicknesses on the power absorption, which enables high-frequency devices to function correctly, is discussed. As the layer thickness increases, the magnitude of S11 increases, while the magnitude of S21 decreases accordingly. The experimental results show that the power absorption is within 80-95% (sheet resistance: 75.1 Ω/□-823.76 Ω/□), in the frequency range of 2-6 GHz. In addition, simulated S-parameter analysis was performed using a high-frequency structure simulator. The simulation results are in good agreement with the experimental results.
Citation
Chung-Yen Hsu, and Lih-Shan Chen, "Power Absorption of 3D Printed Layers on a Microstrip Line," Progress In Electromagnetics Research Letters, Vol. 107, 27-32, 2022.
doi:10.2528/PIERL22080502
References

1. Ma, M. T. and M. Kanda, "Electromagnetic compatibility and interference metrology," NASA STI/Recon Technical Report, Vol. 87, 16217, 1986.

2. Kim, S. H. and S. S. Kim, "Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss," J. Appl. Phys., Vol. 108, No. 2, 024904, Jul. 2010.
doi:10.1063/1.3456515

3. Maruta, K., M. Sugawara, Y. Shimada, and M. Yamaguchi, "Analysis of optimum sheet resistance for integrated electromagnetic noise suppressors," IEEE Trans. Magn., Vol. 42, No. 10, 3377-3379, Sep. 2006.
doi:10.1109/TMAG.2006.879443

4. Kim, S. S., "Numerical analysis on power absorption by Fe3O4 thin films for conduction noise in microstrip line," EEE Trans. Magn., Vol. 48, No. 11, 3490-3493, Oct. 201.
doi:10.1109/TMAG.2012.2198436

5. Ohnuma, S., H. Nagura, H. Fujimori, and T. Masumoto, "Noise suppression effect of nanogranular Co based magnetic thin films at gigahertz frequency," IEEE Trans. Magn., Vol. 40, No. 4, 2712-2715, Aug. 2004.
doi:10.1109/TMAG.2004.834240

6. Pissoort, D., J. Catrysse, T. Claeys, F. Vanhee, B. Boesman, and C. Brull, "Towards a stripline setup to characterise the effects of corrosion and ageing on the shielding effectiveness of EMI gaskets," 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 7-12, Dresden, Germany, 2015..
doi:10.1109/ISEMC.2015.7256123

7. Zeng, Z., Y. Yao, and Y. Zhuang, "A wideband common-mode suppression filter with compact-defected ground structure pattern," IEEE Trans. Electromagn. Compat., Vol. 57, No. 5, 1277-1280, Jun. 2015.
doi:10.1109/TEMC.2015.2440424

8. Liu, Q., S. Connor, C. Olivieri, and F. D. Paulis, "Reduction of EMI due to common-mode currents using a surface-mount EBG-based filter," IEEE Trans. Electromagn. Compat., Vol. 58, No. 5, 1440-1447, Jun. 2016.
doi:10.1109/TEMC.2016.2580701

9. Manzoor, Z., M. T. Ghasr, and K. M. Donnell, "Microwave characterization of 3D printed conductive composite materials," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, Houston, TX, 2018.

10. Viskadourakis, Z., K. C. Vasilopoulos, E. N. Economou, C. M. Soukoulis, and G. Kenanakis, "Electromagnetic shielding effectiveness of 3D printed polymer composites," Appl. Phys. A, Vol. 123, No. 12, 1-7, Nov. 2017.

11. Prince, T. J., E. J. Riley, and S. W. Miller, "Additive manufacturing of PLA-based microwave circuit-analog absorbers," IEEE Trans. Electromagn. Compat., Vol. 63, No. 5, 1341-1346, 2021.
doi:10.1109/TEMC.2020.3044014

12. Lim, D., S. Yu, and S. Lim, "Miniaturized metamaterial absorber using three-dimensional printed stair-like Jerusalem cross," IEEE Access, Vol. 6, 43654-43659, 2018.
doi:10.1109/ACCESS.2018.2862160

13. Chou, Y. J., L. S. Chen, and M. P. Houng, "High-frequency noise absorption of Ag-Fe3O4 films on microstrip transmission line," IEEE Trans. Magn., Vol. 51, No. 4, 1-4, Jul. 2014.
doi:10.1109/TMAG.2014.2332973

14. Lin, G. S., J. L. Chen, L. S. Chen, and M. P. Houng, "Effect of carbon black film on high-frequency power absorption," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 9, 779-781, Aug. 2017.
doi:10.1109/LMWC.2017.2735544