Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-19
Miniaturized Antenna Pair for 2.4/5/6 GHz Wi-Fi 6E Operation
By
Progress In Electromagnetics Research Letters, Vol. 107, 39-47, 2022
Abstract
The aim of this work is to provide a miniaturπized antenna pair, which has a smallest size of 5 mm × 25 mm (about 0.04λ × 0.20λ at 2.4 GHz) among the recent laptop antennas and yet is capable of 2.4/5/6 GHz Wi-Fi 6E operation with acceptable isolation. The antenna pair comprises two small and symmetrical antenna units. Each unit is identical in geometry and has a coupling strip and a parasitic strip with an in-series inductor. The back-to-back unit arrangement helps better isolation in the 2.4 GHz band. A decoupling coupled strip is introduced between the units with a 5 mm spacing. This floating strip of a half wavelength at about 5.36 GHz attracts the surface currents of one unit excited in the 5/6 GHz bands, which in turn helps much decreased currents entering the port of the other unit. As a result, enhanced isolation can also be achieved in the upper bands.
Citation
Saou-Wen Su, and Peng-Hao Juan, "Miniaturized Antenna Pair for 2.4/5/6 GHz Wi-Fi 6E Operation," Progress In Electromagnetics Research Letters, Vol. 107, 39-47, 2022.
doi:10.2528/PIERL22080402
References

1. Federal Communications Commission, , FCC opens 6 GHz band to Wi-Fi and other unlicensed uses, https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses-0.

2. Wi-Fi Alliance, , Wi-Fi Alliance brings Wi-Fi 6 into 6 GHz, https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-brings-wi-fi-6-into-6-ghz.

3. Wireless Broadband Alliance, , WBA's first phase of Wi-Fi 6E trials shows the massive potential of Wi-Fi in the 6 GHz band, https://www.realwire.com/releases/WBAs-First-Phase-of-Wi-Fi-6E-Trials-Shows-the-Massive-Potential-of-Wi-Fi.

4. Su, S. W. and C. C. Wan, "Asymmetrical, self-isolated laptop antenna in the 2.4/5/6 GHz Wi-Fi 6E bands," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

5. Su, S. W., D. P. Yusuf, and F. H. Chu, "Conjoined, Wi-Fi 6E MIMO antennas for laptops," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

6. Su, S. W., "Compact, small, chip-inductor-loaded Wi-Fi 6E monopole antenna," IEEE Int. Symposium on Antennas and Propagat., 1-2, Singapore, 2021.

7. Su, S. W., C. T. Lee, and S. C. Chen, "Compact, printed, tri-band loop antenna with capacitively-driven feed and end-loaded inductor for notebook computers," IEEE Access, Vol. 6, 6692-6699, 2018.
doi:10.1109/ACCESS.2018.2794606

8. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Trans. Antennas Propagat., Vol. 56, 3411-3419, 2008.
doi:10.1109/TAP.2008.2005460

9. Su, S. W., "Very-low-profile, 2.4/5-GHz WLAN monopole antenna for large screen-to-body-ratio notebook computers," Microw. Opt. Technol. Lett., Vol. 60, 1313-1318, 2018.
doi:10.1002/mop.31156

10. Su, S. W., "Capacitor-inductor-loaded, small-sized loop antenna for WLAN notebook computers," Progress In Electromagnetics Research M, Vol. 71, 179-188, 2018.
doi:10.2528/PIERM18061904

11. Su, S. W., "Very-low-profile, small-sized, printed monopole antenna for WLAN notebook computer applications," Progress In Electromagnetics Research Letters, Vol. 82, 51-57, 2019.
doi:10.2528/PIERL18121403

12. Deng, J. Y., J. Y. Li, L. Zhao, and L. X. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas Wireless Propagat. Lett., Vol. 16, 2270-2273, 2017.
doi:10.1109/LAWP.2017.2713986

13. Su, S. W., C. T. Lee, and Y. W. Hsiao, "Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure," IEEE Trans. Antennas Propagat., Vol. 67, 6182-6186, 2019.
doi:10.1109/TAP.2019.2925286

14. Su, S. W. and Y. W. Hsiao, "Small-sized, decoupled two-monopole antenna system using the same monopole as decoupling structure," Microw. Opt. Technol. Lett., Vol. 61, 2049-2055, 2019.
doi:10.1002/mop.31858

15. Chang, W. H. and S. W. Su, "Very-low-profile, decoupled, hybrid, two-antenna system using top-loaded, coupled strip resonator for notebook computer applications," Progress In Electromagnetics Research M, Vol. 84, 63-72, 2019.
doi:10.2528/PIERM19061003

16. Chen, Y.-R. and W.-S. Chen, "Design of MIMO WLAN 2.4/5.2/5.8 and 5G sub-6 GHz antennas for laptop computer applications," IEEE Int. Workshop on Electromagnetics, 1-2, Penghu, Taiwan, 2020.

17. Ansys HFSS, Ansys Inc., , , http://www.ansys.com/Products/Electronics/ANSYS-HFSS.

18. SG 24-S, MVG, , , https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/sg-24.

19. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Lett., Vol. 39, 705-707, 2003.
doi:10.1049/el:20030495

20. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagat. Mag., Vol. 55, 218-232, 2013.
doi:10.1109/MAP.2013.6735522

21. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Vehicular Technol., Vol. 36, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

22. Jha, K. R. and S. K. Sharma, "Combination of MIMO antennas for handheld devices," IEEE Antennas and Propagat. Mag., Vol. 60, 118-131, 2018.
doi:10.1109/MAP.2017.2774198