Vol. 106
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-13
PIN Diodes Loaded 1-Bit Cylindrical Reconfigurable Reflectarray Antenna
By
Progress In Electromagnetics Research Letters, Vol. 106, 97-102, 2022
Abstract
In this paper, we propose a phase compensation method for cylindrical reconfigurable reflectarray antennas and design a cylindrical reconfigurable reflectarray antenna (CRRA) for generating steering beams. Using a PIN diode loaded reflectarray element, 1-bit reflection phase-shift with phase difference of 180°, can be realized. The cylindrical reflectarray consists of 16×18 unit cells whose reflection phase shifts are controlled by bias network independently. Using phase quantization, the reflectarray can generate the desired phase distributions for steering beams. Both simulated and measured results show that the proposed CRRA can achieve beam scanning in ±40˚ angle range. In addition, the measured gain reaches 20.5 dBi, and 1 dB gain bandwidth is 6.9%. The proposed cylindrical conformal reconfigurable reflectarray antenna can provide a reference for the application of the conformal scenario of a reconfigurable reflectarray antenna in the future.
Citation
Yu Zhao, Shixing Yu, and Na Kou, "PIN Diodes Loaded 1-Bit Cylindrical Reconfigurable Reflectarray Antenna," Progress In Electromagnetics Research Letters, Vol. 106, 97-102, 2022.
doi:10.2528/PIERL22071901
References

1. Hum, S. V., M. Okoniewski, and R. J. Davies, "Realizing an electronically tunable reflectarray using varactor diode-tuned elements," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 422-424, Jun. 2005, doi: 10.1109/LMWC.2005.850561.
doi:10.1109/LMWC.2005.850561

2. Omoto, K., T. Tomura, and H. Sakamoto, "Proof-of-concept on misalignment compensation for 5.8-GHz-band reflectarray antennas by varactor diodes," IEEE Access, Vol. 9, 54101-54108, 2021, doi: 10.1109/ACCESS.2021.3071090.
doi:10.1109/ACCESS.2021.3071090

3. Chen, X. and Y. Ge, "A 14 × 14 electronically reconfigurable reflectarray using 1-bit reflective element," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2018, doi: 10.1109/IEEE-IWS.2018.8400890.

4. Pan, X., F. Yang, S. Xu, and M. Li, "A 10 240-element reconfigurable reflectarray with fast steerable monopulse patterns," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 173-181, Jan. 2021, doi: 10.1109/TAP.2020.3008623.
doi:10.1109/TAP.2020.3008623

5. Qu, S.-W., L. Xiao, H. Yi, B.-J. Chen, C. H. Chan, and E. Y.-B. Pun, "Frequency-controlled 2-D focus-scanning terahertz reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 15730-1581, Mar. 2019, doi: 10.1109/TAP.2018.2888949.
doi:10.1109/TAP.2018.2888949

6. Li, F., et al. "Generation and focusing of orbital angular momentum based on polarized reflectarray at microwave frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, 1829-1837, Mar. 2021, doi: 10.1109/TMTT.2020.3040449.
doi:10.1109/TMTT.2020.3040449

7. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Design and experiment of a single-feed quad-beam reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1166-1171, Feb. 2012, doi: 10.1109/TAP.2011.2173126.
doi:10.1109/TAP.2011.2173126

8. Yang, H., et al. "A 1-bit 10 × 10 reconfigurable reflectarray antenna: Design, optimization, and experiment," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2246-2254, Jun. 2016, doi: 10.1109/TAP.2016.2550178.
doi:10.1109/TAP.2016.2550178

9. Carrasco, E., M. Barba, and J. A. Encinar, "X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5700-5708, Dec. 2012, doi: 10.1109/TAP.2012.2208612.
doi:10.1109/TAP.2012.2208612

10. Venneri, F., S. Costanzo, and G. Di Massa, "Design and validation of a reconfigurable single varactor-tuned reflectarray," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 635-645, Feb. 2013, doi: 10.1109/TAP.2012.2226229.
doi:10.1109/TAP.2012.2226229

11. Xi, B., Y. Xiao, K. Zhu, Y. Liu, H. Sun, and Z. Chen, "1-bit wideband reconfigurable reflectarray design in Ku-band," IEEE Access, Vol. 10, 4340-4348, 2022, doi: 10.1109/ACCESS.2021.3117693.
doi:10.1109/ACCESS.2021.3117693

12. Zhang, M.-T., et al. "Design of novel reconfigurable reflectarrays with single-bit phase resolution for Ku-band satellite antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1634-1641, May 2016, doi: 10.1109/TAP.2016.2535166.
doi:10.1109/TAP.2016.2535166

13. Costanzo, S., F. Venneri, A. Raffo, and G. Di Massa, "Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications," IEEE Access, Vol. 6, 71793-71800, 2018, doi: 10.1109/ACCESS.2018.2882093.
doi:10.1109/ACCESS.2018.2882093

14. Riel, M. and J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1260-1266, May 2007, doi: 10.1109/TAP.2007.895586.
doi:10.1109/TAP.2007.895586

15. Sun, D., W. Dou, and L. You, "Application of novel cavity-backed proximity-coupled microstrip patch antenna to design broadband conformal phased array," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1010-1013, 2010, doi: 10.1109/LAWP.2010.2089490.
doi:10.1109/LAWP.2010.2089490

16. Jaeck, V., et al. "Design and manufacturing of conformal antenna array on a conical surface at 5.2 GHz," 2017 47th European Microwave Conference (EuMC), 1207-1210, 2017, doi: 10.23919/EuMC.2017.8231066.
doi:10.23919/EuMC.2017.8231066

17. Wu, B., A. Sutinjo, M. E. Potter, and M. Okoniewski, "On the selection of the number of bits to control a dynamic digital MEMS reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 183-186, 2008, doi: 10.1109/LAWP.2008.920908.
doi:10.1109/LAWP.2008.920908

18. Bayraktar, O., O. A. Civi, and T. Akin, "Beam switching reflectarray monolithically integrated with RF MEMS switches," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 854-862, Feb. 2012.
doi:10.1109/TAP.2011.2173099

19. Han, J., L. Li, G. Liu, Z. Wu, and Y. Shi, "A wideband 1 bit 12 × 12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1268-1272, Jun. 2019, doi: 10.1109/LAWP.2019.2914399.
doi:10.1109/LAWP.2019.2914399

20. Yang, H., et al. "A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3024-3032, Jun. 2017.
doi:10.1109/TAP.2017.2694703