1. Mevoli, G., C. Lamacchia, P. Bia, A. Manna, D. Caratelli, and L. Mescia, "Supershaped sinuous antenna for UWB radar applications," 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-3, IEEE, Aug. 2021, doi: 10.23919/ursigass51995.2021.9560346.
2. Abdollahvand, A., A. Pirhadi, H. Ebrahimian, and M. Abdollahvand, "A compact UWB printed antenna with bandwidth enhancement for in-body microwave imaging applications," Progress In Electromagnetics Research C, Vol. 55, 149-157, 2014.
3. Mohanna, M. M., E. A. Abdallah, H. El-Hennawy, and M. A. Attia, "A novel high directive WILLIS-SINHA tapered slot antenna for GPR application in detecting landmine," Progress In Electromagnetics Research C, Vol. 80, 181-198, 2018.
4. Hasim, N. S. B., K. A. H. Ping, M. T. Islam, Md. Z. Mahmud, S. Sahrani, D. A. A. Mat, and D. N. A. Zaidel, "A slotted UWB antipodal vivaldi antenna for microwave imaging applications," Progress In Electromagnetics Research M, Vol. 80, 35-43, 2019.
5. Alves, M. A., R. J. Port, and M. C. Rezende, "Simulations of the radar cross section of a stealth aircraft," 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 409-412, 2007, doi: 10.1109/IMOC.2007.4404292.
6. Dikmen, C. M. and G. Çakir, "Double side axe shaped UWB antenna with reduced RCS," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 215-217, 2013, doi: 10.1109/APMC.2013.6695098.
7. Xu, C., J. Su, and Z. Li, "Radar absorbing material applied to precise RCS regulation of complex scatterer structure," 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 388-390, 2021, doi: 10.1109/IMWS-AMP53428.2021.9643935.
8. Pazokian, M., N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1382-1385, Aug. 2018, doi: 10.1109/lawp.2018.2846613.
9. Huang, X., Z. Zhao, and G. Wan, "A slotted frequency selective surface with its application in microstrip antenna RCS reduction," 2020 IEEE 3rd International Conference on Electronics Technology (ICET), 724-728, IEEE, May 2020, doi: 10.1109/icet49382.2020.9119716.
10. Chen, T., Q.-M. Cai, L. Zhu, B.-W. Luo, Y.-Y. Zhu, X. Cao, R. Zhang, N. Feng, and Y.-W. Zhao, "A high-gain, low RCS and dual-frequency microstrip antenna using frequency selective surface," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), 2249-2254, Xiamen, China, Dec. 17-20, 2019.
11. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion metasurface," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 2, 197-206, Jan. 2018, doi: 10.1017/s1759078717001477.
12. Chatterjee, J., A. Mohan, and V. Dixit, "Radar cross section reduction and gain enhancement of slot antenna using polarization conversion metasurface for X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 10, e22792, Jul. 2021, doi: 10.1002/mmce.22792.
13. Rajanna, P. K., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, Sep. 2019, doi: 10.1017/s1759078719001119.
14. Xie, P., G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, "Wideband RCS reduction of high gain fabry-perot antenna employing a receiver-transmitter metasurface," Progress In Electromagnetics Research, Vol. 169, 103-115, 2020.
15. Zhu, L., Y. Liu, and Y. Jia, "A broadband low-RCS high-gain circularly polarized holographic antenna based on metasurface," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-2, IEEE, May 2021, doi: 10.1109/icmmt52847.2021.9618044.
16. Parsha, M. K., A. Nandi, and B. Basu, "In-band RCS reduction antennas using an EBG surface," International Journal of Microwave and Wireless Technologies, 1-11, Jun. 2021, doi: 10.1017/s1759078721000933.
17. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017, doi: 10.1109/tap.2017.2734069.
18. Wang, F., Y. Ren, and K. Li, "Broadband RCS reduction of antenna with AMC using gradually concentric ring arrangement," International Journal of Antennas and Propagation, Vol. 2017, 1-7, 2017, doi: 10.1155/2017/1268947.
19. Agastra, E., A. Biberaj, O. Shurdi, B. Kamo, and A. Rakipi, "RCS analysis on ultra-wideband sinuous antenna with elliptical slots," 2022 Microwave Mediterranean Symposium (MMS), 1-6, IEEE, May 2022, doi: 10.1109/mms55062.2022.9825591.
20. Prasad, B. S. H. and M. V. S. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.
21. Singh, A. and H. Singh, "Low RCS microstrip patch array with hybrid high impedance surface based ground plane," Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020.
22. He, X., T. Chen, and X. Wang, "A novel low RCS design method for X-band Vivaldi antenna," International Journal of Antennas and Propagation, Vol. 2012, 1-6, 2012, doi: 10.1155/2012/218681.
23. Zhang, J., H. Li, Q. Zheng, J. Ding, and C. Guo, "Wideband radar cross-section reduction of a microstrip antenna using slots," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1042-1047, Aug. 2018, doi: 10.1017/s1759078718000569.
24. Zhang, J., Q. Zheng, H. Li, J. Ding, and C. Guo, "Wideband radar cross section reduction of a microstrip antenna with square slots," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 4, 341-350, Feb. 2019, doi: 10.1017/s1759078719000011.
25. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wideband radar cross-section reduction of microstrip patch antenna with split-ring resonators," Electronics Letters, Vol. 51, No. 20, 1608-1609, Oct. 2015, doi: 10.1049/el.2015.1725.
26. Mescia, L., G. Mevoli, C. M. Lamacchia, M. Gallo, P. Bia, D. Gaetano, and A. Manna, "Sinuous antenna for uwb radar applications," Sensors, Vol. 22, No. 1, 248, 2022, doi: 10.3390/s22010248.
27. Lamacchia, C. M., M. Gallo, L. Mescia, P. Bia, A. Manna, C. Canestri, and D. Gaetano, "Non-conventional cavity backed sinuous antenna for UWB radar applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 109-110, IEEE, Jul. 2020, doi: 10.1109/ieeeconf35879.2020.9329510.
28. Crocker, D. A. and W. R. Scott, "Sinuous antenna design for UWB radar," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1915-1916, IEEE, Jul. 2019, doi: 10.1109/apusncursinrsm.2019.8888630.
29. Agastra, E., L. Lucci, G. Pelosi, and S. Selleri, "High gain compact strip and slot UWB sinuous antennas," International Journal of Antennas and Propagation, Vol. 2012, 1-9, 2012, doi: 10.1155/2012/721412.
30. Luo, T. and Z. Nie, "RCS reduction of antipodal vivaldi antenna," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 2, 1-3, IEEE, Dec. 2015, doi: 10.1109/apmc.2015.7413164.
31. Khoomwong, E. and C. Phongcharoenpanich, "Design of ultra-broadband bidirectional ring antenna with superellipse slot using MoM-RWG," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, IEEE, Oct. 2017, doi: 10.1109/isanp.2017.8228998.
32. Bitchikh, M. and F. Ghanem, "A four bandwidth-resolution UWB antipodal vivaldi antenna," Progress In Electromagnetics Research M, Vol. 53, 121-129, 2017.
33. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 163-173, Jan. 2014, doi: 10.1109/tap.2013.2287888.
34. ANSYS "HFSS --- High frequency electromagnetic simulation software,", https://www.ansys.com/products/electronics/ansys-hfss, 2022, accessed: Aug. 12, 2022.
35. Hansen, R., "Relationships between antennas as scatterers and as radiators," Proceedings of the IEEE, Vol. 77, No. 5, 659-662, May 1989, doi: 10.1109/5.32056.
36. Agastra, E., G. Pelosi, S. Selleri, and R. Taddei, "Multiobjective optimization techniques," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-29, John Wiley & Sons, Inc., Sep. 2014, ISBN 9780471346081, doi: 10.1002/047134608x.w8226.