1. Misra, G., V. Kumar, A. Agarwal, and K. Agarwal, "Internet of things (IoT) --- A technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology)," American Journal of Electrical and Electronic Engineering, Vol. 4, 23-32, 2016.
2. Jin, H., G. Q. Luo, W. Wang, W. Che, and K.-S. Chin, "Integration design of millimeter-wave filtering patch antenna array with SIW four-way anti-phase filtering power divider," IEEE Access, Vol. 7, 49804-49812, 2019.
doi:10.1109/ACCESS.2019.2909771
3. Reese, R., M. Jost, M. Nickel, E. Polat, R. Jakoby, and H. Maune, "A fully dielectric lightweight antenna array using a multimode interference power divider at W-band," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3236-3239, 2017.
doi:10.1109/LAWP.2017.2771385
4. Xiao, B., H. Yao, M. Li, J.-S. Hong, and K. L. Yeung, "Flexible wideband microstrip-slotline-microstrip power divider and its application to antenna array," IEEE Access, Vol. 7, 143973-143979, 2019.
doi:10.1109/ACCESS.2019.2944462
5. Shanmugam Bhaskar, V. and E. L. Tan, "Power divider with wideband harmonic suppression for center-fed antenna arrays," Microwave and Optical Technology Letters, Vol. 63, 3008-3014, 2021.
doi:10.1002/mop.33000
6. Ali, M., A. O. Watanabe, T.-H. Lin, D. Okamoto, M. R. Pulugurtha, M. M. Tentzeris, et al. "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, 1515-1523, 2020.
doi:10.1109/TCPMT.2020.3013725
7. Mohammadi, P., A. Piroutiniya, and M. H. Rasekhmanesh, "A novel compact feeding network for array antenna," Progress In Electromagnetics Research Letters, Vol. 59, 101-107, 2016.
doi:10.2528/PIERL16021004
8. Feng, W., Y. Shi, X. Y. Zhou, X. Shen, and W. Che, "A bandpass push-pull high power amplifier based on SIW filtering balun power divider," IEEE Transactions on Plasma Science, Vol. 47, 4281-4286, 2019.
doi:10.1109/TPS.2019.2932083
9. Kim, K. and C. Nguyen, "A V-band power amplifier with integrated Wilkinson power dividers-combiners and transformers in 0.18-μm SiGe BiCMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 66, 337-341, 2018.
doi:10.1109/TCSII.2018.2850899
10. Nouri, M. E., S. Roshani, M. H. Mozaffari, and A. Nosratpour, "Design of high-efficiency compact Doherty power amplifier with harmonics suppression and wide operation frequency band," AEU --- International Journal of Electronics and Communications, Vol. 118, 153168, May 1, 2020.
doi:10.1016/j.aeue.2020.153168
11. Qi, X. and F. Xiao, "Filtering Doherty power amplifier," IET Microwaves, Antennas & Propagation, Vol. 14, 1074-1078, 2020.
doi:10.1049/iet-map.2019.0835
12. Zhang, L., X. Tong, J. A. Han, and X. Cheng, "A 45-61 GHz monolithic microwave integrated circuit subharmonic mixer incorporating dual-band power divider," Microwave and Optical Technology Letters, Vol. 62, 2851-2856, 2020.
doi:10.1002/mop.32401
13. Chang, Y.-T. and H.-C. Lu, "A V-band ultra low power sub-harmonic I/Q down-conversion mixer using current re-used technique," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, 2893-2897, 2020.
doi:10.1109/TCSII.2020.2989368
14. Yoon, K. C. and K. G. Kim, "Miniaturization of a single-ended mixer using T-shaped Wilkinson power combiner for medical wireless communication applications," Microwave and Optical Technology Letters, Vol. 61, 1977-1982, 2019.
doi:10.1002/mop.31788
15. Piroutiniya, A. and P. Mohammadi, "The substrate integrated waveguide T-junction power divider with arbitrary power dividing ratio," The Applied Computational Electromagnetics Society Journal (ACES), 428-433, 2016.
16. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.
17. Mishra, B., A. Rahman, S. Shaw, M. Mohd, S. Mondal, and P. P. Sarkar, "Design of an ultra-wideband Wilkinson power divider," 2014 First International Conference on Automation, Control, Energy and Systems (ACES), 1-4, 2014.
18. Hu, J., J. Huang, L. Kang, J. Zhou, Z. Zhang, and W. Peng, "Design of flexible broadband power divider based on defect ground compensation," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.
19. Heidari, S., R. Nemati, N. Masoumi, J. R. Mohassel, and N. Karimian, "DGS for a Wilkinson power divider using a symmetric butterfly comb," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 264-268, 2019.
doi:10.1109/IranianCEE.2019.8786469
20. Chen, W., S. Li, Z. Wu, and Y. Liu, "Wideband power divider based on klopfenstein tapered line," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.
21. Moradian, M., "Wideband in-phase slot-coupled power dividers," AEU --- International Journal of Electronics and Communications, Vol. 82, 327-333, 2017.
doi:10.1016/j.aeue.2017.09.014
22. Guo, L., H. Zhu, and A. Abbosh, "Wideband tunable in-phase power divider using three-line coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 26, 404-406, 2016.
doi:10.1109/LMWC.2016.2562058
23. Younesiraad, H., M. Bemani, and M. Fozi, "A novel fully planar quad band Wilkinson power divider," AEU --- International Journal of Electronics and Communications, Vol. 74, 75-82, 2017.
doi:10.1016/j.aeue.2017.01.020
24. Liu, Y., S. Sun, and L. Zhu, "2n-way wideband filtering power dividers with good isolation enhanced by a modified isolation network," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 6, 3177-3187, 2022.
doi:10.1109/TMTT.2022.3166199
25. Rahardi, R., M. Rizqi, W. D. Lukito, R. Virginio, M. Hilmi, and A. Munir, "Meander line-based Wilkinson power divider for unmanned aerial vehicle application," 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 178-181, 2020.
doi:10.1109/Comnetsat50391.2020.9328980
26. Zhao, M., A. Kumar, C. Wang, B. Xie, T. Qiang, and K. K. Adhikari, "Design method of dual-band Wilkinson power divider with improved out-of-band rejection performance and high design exibility," AEU --- International J. of Electronics and Communications, Vol. 110, 152844, 2019.
doi:10.1016/j.aeue.2019.152844
27. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microwave and Wireless Components Letters, Vol. 18, 518-520, 2008.
doi:10.1109/LMWC.2008.2001009
28. Ahmed, O. M. and A.-R. Sebak, "Experimental investigation of new ultra wideband in-phase and quadrature-phase power splitters," Journal of Electromagnetic Waves and Applications, Vol. 23, 2261-2270, 2009.
doi:10.1163/156939309790416053
29. Osman, S. A. M., A. M. E. El-Tager, F. I. Abdelghany, and I. M. Hafez, "Two-way modified Wilkinson power divider for UWB applications using two sections of unequal electrical lengths," Progress In Electromagnetics Research C, Vol. 68, 221-233, 2016.
doi:10.2528/PIERC16072107
30. Chandrasekarani, S. S., S. R. Avaninathan, and P. Murugesan, "A meander coupled line wideband power divider with open stubs and DGS for mobile application," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, 3637-3644, 2017.
doi:10.3906/elk-1603-282
31. Hayati, M., A. Abdipour, and A. Abdipour, "A Wilkinson power divider with harmonic suppression and size reduction using high-low impedance resonator cells," Radioengineering, Vol. 24, 137-141, 2015.
doi:10.13164/re.2015.0137
32. Liu, W.-Q., F. Wei, C.-H. Pang, and X.-W. Shi, "Design of a compact ultra-wideband power divider," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2012.
33. Ahmed, O. and A.-R. Sebak, "A modified Wilkinson power divider/combiner for ultrawideband communications," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.
34. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010.
doi:10.2528/PIERL10101805
35. Liu, Y., L. Zhu, and S. Sun, "Proposal and design of a power divider with wideband power division and port-to-port isolation: A new topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 1431-1438, 2020.
doi:10.1109/TMTT.2019.2955107
36. Srisathit, K., P. Jadpum, and W. Surakampontorn, "Miniature Wilkinson divider and hybrid, coupler with harmonic suppression, using T-shaped transmission line," 2007 Asia-Pacific Microwave Conference, 1-4, 2007.
37. Hazeri, A. R. and T. Faraji, "Miniaturisation and harmonic suppression of the branch-line hybrid coupler," International Journal of Electronics, Vol. 98, 1699-1710, 2011.
doi:10.1080/00207217.2011.609968
38. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401
39. Lim, J.-S., Y.-T. Lee, C.-S. Kim, D. Ahn, and S. Nam, "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microwave and Wireless Components Letters, Vol. 12, 479-481, 2002.
40. Yu, T., "A broadband Wilkinson power divider based on the segmented structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1902-1911, 2018.
doi:10.1109/TMTT.2018.2799579
41. Cohn, S. B., "A class of broadband three-port TEM-mode hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, 110-116, 1968.
doi:10.1109/TMTT.1968.1126617
42. Steer, M., Microwave and RF Design, NC State University, 2019.
43. Nagi, H. S., "Miniature lumped element 180/spl deg/Wilkinson divider," IEEE MTT-S International Microwave Symposium Digest, 2003, Vol. 1, 55-58, 2003.
doi:10.1109/MWSYM.2003.1210882
44. Ma, Z., W. Zhang, F. Liu, and M. Ohira, "A novel 10 MHz-4 GHz Wilkinson power divider using lumped compensation elements," IEICE Electronics Express, Vol. 19, 20210465, 2022.
doi:10.1587/elex.19.20210465