Vol. 105
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-04
A Flexible, Foldable Metamaterial Absorber Fabricated by Matrix-Assisted Catalytic Printing
By
Progress In Electromagnetics Research Letters, Vol. 105, 131-137, 2022
Abstract
Metamaterial absorbers are widely used in sensing, cloaking, imaging, etc. Currently, most metamaterial absorbers are integrated with hard substrates, which limit their applications for non-planar and irregularsurfaces. In this paper, a flexible, foldable metamaterial absorber is proposed using a matrix-assisted catalytic printing method. The absorber is composed of periodically patterned eight-round sector copper arrays supported by a polyethylene terephthalate substrate. Experimental results show that the absorber exhibits one absorption peak near 10.2 GHz.
Citation
Pengyu Gong, Huan Lu, Bo Yang, Ruisheng Guo, Siqi Zhang, and Rongrong Zhu, "A Flexible, Foldable Metamaterial Absorber Fabricated by Matrix-Assisted Catalytic Printing," Progress In Electromagnetics Research Letters, Vol. 105, 131-137, 2022.
doi:10.2528/PIERL22070410
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shamonina, E. and L. Solymar, "Metamaterials: How the subject started," Metamaterials, Vol. 1, 12-18, 2007.
doi:10.1016/j.metmat.2007.02.001

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

4. Gao, X., W. L. Yang, H. Ma, Q. Cheng, X. Yu, and T. Cui, "A reconfigurable broadband polarization converter based on an active metasurface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6086-6095, 2018.
doi:10.1109/TAP.2018.2866636

5. Tian, X., P. Lee, Y. Tan, T. Wu, H. Yao, M. Zhang, and J. Ho, "Wireless body sensor networks based on metamaterial textiles," Nature Electronics, Vol. 2, No. 6, 243-251, 2019.
doi:10.1038/s41928-019-0257-7

6. Cai, T., S. Tang, B. Zheng, G. Wang, W. Ji, C. Qian, and H. Chen, "Ultrawideband chromatic aberration-free meta-mirrors," Advanced Photonics, Vol. 3, No. 1, 016001, 2020.
doi:10.1117/1.AP.3.1.016001

7. Beruete, M. and I. Jáuregui-López, "Terahertz sensing based on metasurfaces," Advanced Optical Materials, Vol. 8, No. 3, 1900721, 2020.
doi:10.1002/adom.201900721

8. Lu, H., B. Zheng, C. Qian, Z. Wang, Y. Yang, and H. Chen, "Frequency-controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, 2021.
doi:10.1002/adom.202001311

9. Zhang, J., X. Wei, I. D. Rukhlenko, H. T. Chen, and W. Zhu, "Electrically tunable metasurface with independent frequency and amplitude modulations," ACS Photonics, Vol. 7, No. 1, 265-271, 2019.
doi:10.1021/acsphotonics.9b01532

10. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin-locked metasurface retroreflector," Advanced Science, 2201397, 2022.
doi:10.1002/advs.202201397

11. Yao, H., H. Mei, W. Zhang, S. Zhong, and X. Wang, "Theoretical and experimental research on terahertz metamaterial sensor with exible substrate," IEEE Photonics Journal, Vol. 14, No. 1, 1-9, 2021.
doi:10.1109/JPHOT.2021.3124414

12. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine-learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2001-2010, 2022.
doi:10.1515/nanoph-2021-0663

13. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Advanced Optical Materials, Vol. 6, 1800415, 2018.
doi:10.1002/adom.201800415

14. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, 026401, 2018.
doi:10.1088/1361-6633/aa8732

15. Di Renzo, M., A. Zappone, M. Debbah, M. S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020.
doi:10.1109/JSAC.2020.3007211

16. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

17. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

18. Sun, P., C. You, A. Mahigir, T. Liu, F. Xia, W. Kong, and M. Yun, "Graphene-based dual-band independently tunable infrared absorber," Nanoscale, Vol. 10, No. 33, 15564-15570, 2018.
doi:10.1039/C8NR02525H

19. Zhao, X., Y. Wang, J. Schalch, G. Duan, K. Cremin, and J. Zhang, "Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers," ACS Photonics, Vol. 6, No. 4, 830-837, 2019.
doi:10.1021/acsphotonics.8b01644

20. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002

21. Xiong, H., Q. T. Ji, Bashir, and F. Yang, "Dual-controlled broadband terahertz absorber based on graphene and dirac semimetal," Optics Express, Vol. 28, No. 9, 13884-13894, 2020.
doi:10.1364/OE.392380

22. Verma, V. K., S. K. Mishra, K. K. Kaushal, N. Gupta, and B. Appasani, "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020.
doi:10.1007/s11468-019-01010-y

23. Lin, K. T., H. Lin, T. Yang, and B. Jia, "Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion," Nature Communications, Vol. 11, No. 1, 1389, 2020.
doi:10.1038/s41467-020-15116-z

24. Qi, L. and C. Liu, "Broadband multilayer graphene metamaterial absorbers," Optical Materials Express, Vol. 9, No. 3, 1298-1309, 2019.
doi:10.1364/OME.9.001298

25. Feng, H., Z. Xu, L. I. Kai, M. Wang, and M. Yun, "Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials," Optics Express, Vol. 29, No. 5, 7158-7167, 2021.
doi:10.1364/OE.418865

26. Yao, Y., Z. Liao, Z. Liu, X. Liu, J. Zhou, G. Liu, and J. Wang, "Recent progresses on metamaterials for optical absorption and sensing: A review," Journal of Physics D: Applied Physics, Vol. 54, No. 11, 113002, 2021.
doi:10.1088/1361-6463/abccf0

27. Guo, R., Y. Yu, Z. Xie, X. Liu, X. Zhou, and Y. Gao, "Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors," Advanced Materials, Vol. 25, No. 24, 3343-3350, 2013.
doi:10.1002/adma.201301184

28. Azzaroni, O., Z. Zheng, Z. Yang, and W. Huck, "Polyelectrolyte brushes as efficient ultrathin platforms for site-selective copper electroless deposition," Langmuir the Acs Journal of Surfaces & Colloids, Vol. 22, No. 16, 6730-6733, 2006.
doi:10.1021/la060891+

29. Liu, X., H. Chang, Y. Li, W. T. Huck, and Z. Zheng, "Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns," ACS Applied Materials & Interfaces, Vol. 2, No. 2, 529-535, 2010.
doi:10.1021/am900744n

30. Wang, X., H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms," Advanced Materials, Vol. 23, No. 27, 3090-3094, 2011.
doi:10.1002/adma.201101120