State Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageState Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageSchool of Electrical and Electronic Engineering
North China Electric Power University
China
HomepageState Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageElectric Power Research Institute
State Grid Zhejiang Electric Power Company
China
HomepageSchool of Electrical and Electronic Engineering
North China Electric Power University
China
Homepage1. Frikha, A., M. Bensetti, F. Duval, et al. "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Transactions on Magnetics, Vol. 51, No. 3, 1-4, Mar. 2015.
doi:10.1109/TMAG.2014.2362953
2. Frikha, A., M. Bensetti, L. Pichon, et al. "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, 1481-1490, Dec. 2015.
doi:10.1109/TEMC.2015.2463677
3. Mou, W. and M. Lu, "Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil," Progress in Electromagnetics Research C, Vol. 117, 55-72, 2021.
doi:10.2528/PIERC21072701
4. Zhou, Y., L. Zhang, S. Xiu, et al. "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
doi:10.1109/ACCESS.2019.2939197
5. Lee, S., D.-H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless highpower transfer system," IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 4356-4367, Jun. 2019.
doi:10.1109/TIE.2018.2851988
6. Lu, C., X. Huang, C. Rong, et al. "Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial," The Journal of Engineering, Vol. 2019, No. 16, 1812-1815, 2019.
doi:10.1049/joe.2018.8678
7. Ma, D., M. Ding, J. Lu, et al. "Study of shielding ratio of cylindrical ferrite enclosure with gaps and holes," IEEE Sensors Journal, Vol. 19, No. 15, 6085-6092, Aug. 2019.
doi:10.1109/JSEN.2019.2904719
8. Zhao, J., J. Zhang, Z. Liu, et al. "Immunity requirements for secondary equipment with regard to switching operations of disconnectors in substations," 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), 135-138, Oct. 2016.
9. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, No. 1, 6-18, Mar. 1967.
doi:10.1109/TEMC.1967.4307447
10. Lovat, G., P. Burghignoli, R. Araneo, et al. "Magnetic shielding of planar metallic screens: A new analytical closed-form solution," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1884-1888, Nov. 2020.
doi:10.1109/TEMC.2019.2952401
11. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley & Sons, Ltd., 2008.
doi:10.1002/9780470268483
12. Mohammadi, E., P. Dehkhoda, A. Tavakoli, et al. "Shielding effectiveness of a metallic perforated enclosure by mesh-free method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 758-765, Jun. 2016.
doi:10.1109/TEMC.2016.2526662
13. Achkar, G. A., L. Pichon, M. Bensetti, and L. Daniel, "Homogenization of metal grid reinforced composites for near-field low frequency magnetic shielding," Progress In Electromagnetics Research M, Vol. 99, 153-163, 2021.
doi:10.2528/PIERM20052402
14. Yang, X. C., Z. X. Zhang, F. Ning, et al. "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low frequency magnetic fields," IEEE Acess, Vol. 8, 79844-79850, Apr. 2020.
doi:10.1109/ACCESS.2020.2988709
15. Bai, W. X., F. Ning, X. C. Yang, et al. "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 30-37, Feb. 2021.
doi:10.1109/TEMC.2020.2986249
16. Smedt, R. D., J. De Moerloose, S. Criel, et al. "Approximate simulation of the shielding effectiveness of a rectangular enclosure with a grid wall," 1998 IEEE EMC Symposium, International Symposium on Electromagnetic Compatibility, Symposium Record (Cat. No.98CH36253), 1030-1034, Aug. 1998.
doi:10.1109/ISEMC.1998.750350
17. Lee, K. and G. Bedrosian, "Diffusive electromagnetic penetration into metallicenclosures," IEEE Transactions on Antennas Propagation, Vol. 27, No. 2, 194-198, Mar. 1979.
doi:10.1109/TAP.1979.1142064
18. Kelha, V., J. Pukki, R. Peltonen, et al. "Design, construction, and performance of a large-volume magnetic shield," IEEE Transactions on Magnetics, Vol. 18, No. 1, 260-270, Jan. 1982.
doi:10.1109/TMAG.1982.1061780
19. Park, Y. B. and H. S. Lee, "Magnetostatic field penetration into multiple annular apertures," IEEE Transactions on Magnetics, Vol. 46, No. 11, 3866-3869, Nov. 2010.
doi:10.1109/TMAG.2010.2055576
20. Sten, J. C.-E., "Magnetic moment and surface dipole distributions of circular holes in a conducting screen," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 4, 290-297, Nov. 1999.
doi:10.1109/15.809796
21. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 163, Jan. 1944.
22. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 43, 298-306, Aug. 1988.
doi:10.1109/15.3309
23. COMSOL Multiphysics, https://www.comsol.asia/comsol-multiphysics, last accessed 2022/7/3.
24. Park, H. H., C. H. Hyoung, and J. H. Kwon, "Improvement of low-frequency magnetic shielding measurement using rhombic and long rectangular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1364-1368, Aug. 2020.
doi:10.1109/TEMC.2019.2942523