Vol. 113
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-09
Parameter Identification Based on Chaotic Map Simulated Annealing Genetic Algorithm for PMSWG
By
Progress In Electromagnetics Research M, Vol. 113, 59-71, 2022
Abstract
Traditional genetic algorithm identification of permanent magnet synchronous wind generator (PMSWG) parameters is easy to fall into local optimum, resulting in low accuracy of parameter identification results and slow convergence, which reduces the accuracy of parameter tuning of proportional-integral (PI) controller. Aiming at this problem, a chaotic mapping simulated annealing genetic algorithm (CMSAGA) for identifying PMSWG parameters is proposed. The traditional genetic algorithm (GA) has the ability of global random search, combined with the probability breakthrough characteristic of the simulated annealing (SA) algorithm, which avoids the parameter identification result falling into the local optimum and finally tends to the global optimum. With the increase of iteration times, the initial population is mapped with tent chaos mapping theory, and the optimal value of the population is disturbed in each iteration to increase the diversity of the population, making the proposed algorithm converge faster and improve the accuracy. Experiments show that the proposed algorithm has good accuracy and convergence speed, PMSWG stator resistance, stator winding d-q axis inductance and permanent magnet flux can be identified.
Citation
Yang Zhang, Chao Zhang, and Zhun Cheng, "Parameter Identification Based on Chaotic Map Simulated Annealing Genetic Algorithm for PMSWG," Progress In Electromagnetics Research M, Vol. 113, 59-71, 2022.
doi:10.2528/PIERM22070101
References

1. Liu, X., Y. Pan, L.Wang, et al. "Model predictive control of permanent magnet synchronous motor based on parameter identification and dead time compensation," Progress In Electromagnetics Research C, Vol. 120, 253-263, 2022.
doi:10.2528/PIERC22040103

2. Wen, D., C. Shi, K. Liao, et al. "Fast backfire double annealing particle swarm optimization algorithm for parameter identification of permanent magnet synchronous motor," Progress In Electromagnetics Research M, Vol. 104, 23-38, 2021.
doi:10.2528/PIERM21052802

3. Liu, X., Y. Pan, Y. Zhu, H. Han, and L. Ji, "Decoupling control of permanent magnet synchronous motor based on parameter identification of fuzzy least square method," Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/PIERM21032601

4. Zhu, L., B. Xu, and H. Zhu, "Interior permanent magnet synchronous motor dead-time compensation combined with extended Kalman and neural network bandpass filter," Progress In Electromagnetics Research M, Vol. 98, 193-203, 2020.
doi:10.2528/PIERM20100903

5. Zhang, Y., Z. Yin, X. Sun, and Y. Zhong, "On-line identification methods of parameters for permanent magnet synchronous motors based on cascade MRAS," 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 345-350, 2015.
doi:10.1109/ICPE.2015.7167808

6. Li, M., K. Lv, C. Wen, et al. "Sensorless control of permanent magnet synchronous linear motor based on sliding mode variable structure MRAS flux observation," Progress In Electromagnetics Research Letters, Vol. 101, 89-97, 2021.
doi:10.2528/PIERL21101401

7. Ouyang, Y. and Y. Dou, "Speed sensorless control of PMSM based on MRAS parameter identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1618-1622, IEEE, 2018.
doi:10.23919/ICEMS.2018.8549314

8. Sun, P., Q. Ge, B. Zhang, et al. "Sensorless control technique of PMSM based on RLS on-line parameter identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1670-1673, IEEE, 2018.
doi:10.23919/ICEMS.2018.8549482

9. Jiang, X., P. Sun, and Z. Q. Zhu, "Modeling and simulation of parameter identification for PMSM based on EKF," 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 345-348, 2010.

10. Xiao, Q., K. Liao, C. Shi, et al. "Parameter identification of direct-drive permanent magnet synchronous generator based on EDMPSO-EKF," IET Renewable Power Generation, Vol. 16, No. 5, 1073-1086, 2022.
doi:10.1049/rpg2.12415

11. Sel, A., B. Sel, U. Coskun, et al. "Comparative study of an EKF-based parameter estimation and a nonlinear optimization-based estimation on PMSM system identification," Energies, Vol. 14, No. 19, 610, 2021.
doi:10.3390/en14196108

12. Hussain, S. and M. A. Bazaz, "Sensorless control of PMSM drive using Neural Network Observer," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1-5, IEEE, 2016.

13. Wang, S., G. Yang, Z.-J. Qu, et al. "Identification of PMSM based on EKF and elman neural network," 2009 IEEE International Conference on Automation and Logistics, 1459-1463, IEEE, 2009.

14. Zou, Y., P. X. Liu, C. Yang, et al. "Collision detection for virtual environment using particle swarm optimization with adaptive cauchy mutation," Cluster Computing, Vol. 20, No. 2, 1765-1774, 2017.
doi:10.1007/s10586-017-0815-6

15. Liu, Z., J. Zhang, S. Zhou, X. Li, and K. Liu, "Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM," IEEE Transactions on Cybernetics, Vol. 43, No. 6, 1921-1935, Dec. 2013.
doi:10.1109/TSMCB.2012.2235828

16. Avdeev, A. and O. Osipov, "PMSM identification using genetic algorithm," 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), 1-4, 2019.

17. Guo, H., B. Zhou, P. Yang, and X. Gu, "Application of modified Stribeck model and simulated annealing genetic algorithm in friction parameter identification," 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 1-5, 2017.

18. Kumar, M., D. Husain, N. Upreti, et al. "Genetic algorithm: Review and application,", Available at SSRN 3529843, 2010.

19. Zhang, D., W. Li, X. Wu, et al. "Application of simulated annealing genetic algorithm-optimized Back Propagation (BP) neural network in fault diagnosis," International Journal of Modeling, Simulation, and Scientific Computing, Vol. 10, No. 04, 1950024, 2019.
doi:10.1142/S1793962319500247

20. Guo, H., B. Zhou, P. Yang, and X. Gu, "Application of modified Stribeck model and simulated annealing genetic algorithm in friction parameter identification," 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 1-5, 2017.