Vol. 112
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-23
A Miniaturized Dual-Polarized Band Notched Absorber with Low Insertion Loss
By
Progress In Electromagnetics Research M, Vol. 112, 231-241, 2022
Abstract
In this study, a novel, low-profile, polarization-insensitive, and compact band-notched absorber is presented. The objective of the proposed work is to design a miniaturized FSS-based band-notch absorber with high angular stability exhibiting strong operational bandwidth of 130.5% (1.7 GHz to 8.09 GHz). The absorber consists of a reflecting band sandwiched between two absorption bands. The absorption bands lie in between 1.7 GHz to 3.75 GHz and 5.65 GHz to 8.09 GHz respectively. The strong reflection band with 1 dB insertion loss lies in the frequency range from 4.25 GHz to 5.12 GHz. The proposed absorber structure comprises multiple layers with a metal sheet at the bottom. Total thickness of the band notch absorber is only 0.064λL (where λL is the wavelength corresponding to the lowest frequency of operation). The top layer comprises a modified swastika frame metallic structure loaded with lumped resistors placed on a dielectric substrate. Two air layers, one below the top layer and the other above the bottom metal, are inserted. In between two air layers a dielectric layer with a metallic rectangular ring pattern is positioned. The four-fold symmetrical structure results in polarization insensitive response. The equivalent circuit of the proposed structure is developed for understanding the underlying working principle of band notch absorbers. The surface current distribution has also been studied. The designed absorber is fabricated, and measurements are done in an anechoic chamber. The measured results show good agreement with the simulated ones.
Citation
Saurabh Sambhav, and Jayanta Ghosh, "A Miniaturized Dual-Polarized Band Notched Absorber with Low Insertion Loss," Progress In Electromagnetics Research M, Vol. 112, 231-241, 2022.
doi:10.2528/PIERM22062905
References

1. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, 194-205, 1989.
doi:10.1109/8.18706

2. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, 2740-2747, 2012.
doi:10.1109/TAP.2012.2194640

3. Paquay, M. H. A., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin amc structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

4. Iriarte Galarregui, J. C., A. Tellechea Pereda, J. L. M. de Falcόn, I. Ederra, R. Gonzalo, and P. de Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915

5. Zhou, P., L. Huang, J. Xie, D. Liang, H. Lu, and L. Deng, "A study on the effective permittivity of carbon/pi honeycomb composites for radar absorbing design," IEEE Transactions on Antennas and Propagation, Vol. 60, 3679-3683, 2012.
doi:10.1109/TAP.2012.2201120

6. Zhuang, Y., G. Wang, Q. Zhang, and C. Zhou, "Low-scattering tri-band metasurface using combination of diffusion, absorption and cancellation," IEEE Access, Vol. 6, 17306-17312, 2018.
doi:10.1109/ACCESS.2018.2810262

7. Zheng, Q., C. Guo, J. Ding, and G. A. E. Vandenbosch, "A broadband low-rcs metasurface for CP patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, 3529-3534, 2021.
doi:10.1109/TAP.2020.3030547

8. Ghaneizadeh, A., M. Joodaki, J. Börcsök, A. Golmakani, and K. Mafinezhad, "Analysis, design, and implementation of a new extremely ultrathin 2-d-isotropic flexible energy harvester using symmetric patch fss," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 2108-2115, 2020.
doi:10.1109/TMTT.2020.2982386

9. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface ab sorber," IEEE Transactions on Antennas and Propagation, Vol. 55, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980

10. Mei, P., X. Q. Lin, J. W. Yu, and P. C. Zhang, "A band-notched absorber designed with high notch-band-edge selectivity," IEEE Transactions on Antennas and Propagation, Vol. 65, 3560-3567, 2017.
doi:10.1109/TAP.2017.2705151

11. Han, Y., L. Zhu, Y. Chang, and B. Li, "Dual-polarized bandpass and band-notched frequency-selective absorbers under multimode resonance," IEEE Transactions on Antennas and Propagation, Vol. 66, 7449-7454, 2018.
doi:10.1109/TAP.2018.2870274

12. Sharma, A., S. Ghosh, and K. V. Srivastava, "A polarization-insensitive band-notched absorber for radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, 259-263, 2021.
doi:10.1109/LAWP.2020.3047643

13. Strifors, H. and G. Gaunaurd, "Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating," IEEE Transactions on Antennas and Propagation, Vol. 46, 1252-1262, 1998.
doi:10.1109/8.719967

14. Han, Y., W. Che, X. Xiu, W. Yang, and C. Christopoulos, "Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays," IEEE Transactions on Antennas and Propagation, Vol. 65, 6998-7008, 2017.
doi:10.1109/TAP.2017.2759964

15. Ding, Y., M. Li, J. Su, Q. Guo, H. Yin, Z. Li, and J. Song, "Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch," IEEE Transactions on Antennas and Propagation, Vol. 69, 1493-1504, 2021.
doi:10.1109/TAP.2020.3026889

16. Li, B. and Z. Shen, "Wideband 3d frequency selective rasorber," IEEE Transactions on Antennas and Propagation, Vol. 62, 6536-6541, 2014.
doi:10.1109/TAP.2014.2361892

17. Omar, A., Z. Shen, and H. Huang, "Absorptive frequency-selective reflection and transmission structures," IEEE Transactions on Antennas and Propagation, Vol. 65, 6173-6178, 2017.
doi:10.1109/TAP.2017.2754463

18. Chen, Q., S. Yang, J. Bai, and Y. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, 4897-4902, 2017.
doi:10.1109/TAP.2017.2722875

19. Zhang, Y., B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, "Frequency selective rasorber with low insertion loss and dual-band absorptions using planar slotline structures," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 633-636, 2018.

20. Deng, T., Y. Yu, Z. Shen, and Z. N. Chen, "Design of 3-d multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, 108-117, 2019.
doi:10.1109/TMTT.2018.2883060

21. Han, T., K. Wen, Z. Xie, and X. Yue, "An ultra-thin wideband reflection reduction metasurface based on polarization conversion," Progress In Electromagnetics Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405

22. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using double square-loop array," IEEE Transactions on Antennas Propagation, Vol. 61, No. 12, 6022-6029, Dec. 2013.
doi:10.1109/TAP.2013.2280836

23. Sheokand, H., S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, "Transparent broadband metamaterial absorber based on resistive films," Journal of Applied Physics, Vol. 122, No. 10, 105105, 2017.
doi:10.1063/1.5001511

24. Sambhav, S., J. Ghosh, and A. K. Singh, "Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 5, 1333-1340, Oct. 2021.
doi:10.1109/TEMC.2021.3058583

25. Singh, G., A. Sharma, and S. Ghosh, "A broadband multilayer circuit analog absorber using resistive ink," Microwave Optical Technology Letters, Vol. 63, 322-328, 2020.

26. Malik, S., M. Saikia, A. Sharma, G. Singh, J. Ramkumar, P. K. Mishra, and K. V. Srivastava, "Design and analysis of polarization-insensitive broadband microwave absorber for perfect absorption," Progress In Electromagnetics Research M, Vol. 104, 213-223, 2021.
doi:10.2528/PIERM21062702