1. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 40-50, 2012.
doi:10.1109/MAP.2012.6202511
2. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3813-3820, 2009.
doi:10.1109/TAP.2009.2033435
3. Nguyen, P. T., A. M. Abbosh, and S. Crozier, "3-D focused microwave hyperthermia for breast cancer treatment with experimental validation," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3489-3500, 2017.
doi:10.1109/TAP.2017.2700164
4. Li, P.-F., S.-W. Qu, and S. Yang, "Two-dimensional imaging based on near-field focused array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, No. 2, 274-278, 2018.
doi:10.1109/LAWP.2018.2888853
5. Li, L., et al. "Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting," Appl. Phys. Lett., Vol. 116, No. 6, 060501, 2020.
doi:10.1063/1.5140966
6. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392
7. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, 2011.
doi:10.1109/TAP.2011.2123069
8. You, B., Y. Liu, J. Zhou, and H. Chou, "Numerical synthesis of dualband reflectarray antenna for optimum near-field radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 760-762, 2012.
9. Plaza, E. G., et al. "An ultrathin 2-bit near-field transmitarray lens," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1784-1787, 2017.
10. Li, Y., et al. "Cylindrical conformal array antenna for near field focusing," Int. J. RF Microw. Comput.-Aid. Eng., Vol. 32, No. 6, e23135, 2022.
doi:10.1002/mmce.23135
11. He, Q., S. L. Sun, S. Y. Xiao, et al. "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.
doi:10.1088/1674-1056/23/4/047808
12. Holloway, C. L., E. F. Kuester, and D. Novotny, "Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 525-529, 2009.
doi:10.1109/LAWP.2009.2018123
13. Yu, S., et al. "Design of dual-polarized reflectarray for near-field shaped focusing," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 5, 803-807, 2021.
doi:10.1109/LAWP.2021.3063848
14. Huang, H. and J. Zhang, "Multifunctional near field focusing transmission metasurface based on polarization sensitivity," Microw. Opt. Technol. Lett., Vol. 63, No. 7, 1868-1874, 2021.
doi:10.1002/mop.32858
15. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3016-3024, 2015.
doi:10.1109/TAP.2015.2426832
16. Fong, B. H., et al. "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, 2010.
doi:10.1109/TAP.2010.2055812
17. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1403-1413, 2013.