1. Park, J., M. Jeong, N. Hussain, S. Rhee, S. Park, and N. Kim, "A low-profile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface," Microw. Opt. Technol. Lett., Vol. 61, 2513, 2019.
doi:10.1002/mop.31931
2. Salhi, R., M. Labidi, M. A. Boujemaa, and F. Choubani, "Dual-band microstrip patch antenna based on metamaterial refractive surface," Appl. Phys. A --- Mater., Vol. 123, 420, 2017.
doi:10.1007/s00339-017-1030-2
3. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE T. Antenn. Propag., Vol. 37, 677, 1989.
doi:10.1109/8.29353
4. Tian, C., Y. C. Jiao, G. Zhao, and H.Wang, "A wideband transmit array using triple-layer elements combined with cross slots and double square rings," IEEE Antenn. Wirel. Pr., Vol. 16, 1561, 2017.
doi:10.1109/LAWP.2017.2651027
5. Carolina, M. S., A. P. Feresidis, and G. Goussetis, "Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces," IEEE T. Antenn. Propag., Vol. 62, 586, 2014.
doi:10.1109/TAP.2013.2292076
6. Xu, K. D., D. T. Li, Y. H. Liu, and Q. H. Liu, "Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications," IEEE Access, Vol. 6, 31695, 2018.
doi:10.1109/ACCESS.2018.2838328
7. Rengasamy, R., D. Dhanasekaran, C. Chakraborty, and S. Ponnan, "Modified Minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications," Measurement, Vol. 182, 109766, 2021.
doi:10.1016/j.measurement.2021.109766
8. Gupta, R. K. and J. Mukherjee, "Efficient high gain with low sidelobe level antenna structures using circular array of square parasitic patches on a superstrate layer," Microw. Opt. Technol. Lett., Vol. 52, 2812, 2010.
doi:10.1002/mop.25613
9. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE T. Antenn. Propag., Vol. 64, 3310, 2016.
doi:10.1109/TAP.2016.2573860
10. Bai, H., G. M. Wang, and X. J. Zou, "A wideband and multi-mode metasurface antenna with gain enhancement," AEU --- Int. J. Electron. C., Vol. 126, 153402, 2020.
doi:10.1016/j.aeue.2020.153402
11. Das, S. and S. Sahu, "Polarization reconfigurability enabled metamaterial inspired dielectric resonator based Fabry-Perot resonator cavity antenna with high gain and bandwidth," Int. J. RF Microw. C. E., Vol. 31, e22603, 2021.
12. Cao, Y. F., Y. Cai, W. Q. Cao, B. K. Xi, Z. P. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antenn. Wirel. Pr., Vol. 18, 1405, 2019.
doi:10.1109/LAWP.2019.2917909
13. Cheng, Y. Z., F. Chen, and H. Luo, "Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency," Nanoscale Res. Lett., Vol. 16, 12, 2021.
doi:10.1186/s11671-021-03474-6
14. Gao, G. P., C. Yang, B. Hu, S. F. Wang, and R. F. Zhang, "Design of a high-gain and low-profile quasi-Cassegrain antenna based on metasurfaces," IEEE Antenn. Wirel. Pr., Vol. 17, 1435, 2018.
doi:10.1109/LAWP.2018.2848920
15. Li, H. P., G. M. Wang, H. X. Xu, T. Cai, and J. G. Liang, "X-band phasegradient metasurface for high-gain lens antenna application," IEEE T. Antenn. Propag., Vol. 63, 5144, 2015.
doi:10.1109/TAP.2015.2475628
16. Tong, X. Y., X. B. Zhao, F. Wei, L. Xu, and R. Li, "Broadband folded reflectarray based on single-layer subwavelength elements using discrete phase control," Int. J. Rf Microw. C. E., Vol. 31, e22710, 2021.
17. Yang, Z. Z., F. Liang, Y. Yi, D. S. Zhao, and B. Z.Wang, "Metasurface-based wideband, low-profile, and high-gain antenna," IET Microw. Antenna P., Vol. 13, 436, 2018.
doi:10.1049/iet-map.2018.5111
18. Zhou, E. Y., Y. Z. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with re ective focusing metasurface," AEU --- Int. J. Electron. C., Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709
19. Yue, T., Z. H. Jiang, and D. H. Werner, "Compact, wideband antennas enabled by interdigitated capacitor-loaded metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 1595, 2016.
doi:10.1109/TAP.2016.2535499
20. Asadpor, L., G. Sharifi, and M. Rezvani, "Design of a high-gain wideband antenna using double-layer metasurface," Microw. Opt. Technol. Lett., Vol. 61, 1004, 2018.
doi:10.1002/mop.31697
21. Majumder, L., K. Krishnamoorthy, J. Mukherjee, and K. P. Ray, "Compact broadband directive slot antenna loaded with cavities and single and double layers of metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 4595, 2016.
doi:10.1109/TAP.2016.2601346
22. Ma, S. B., H. Q. Zhai, Z. C. Wei, X. Y. Zhou, L. C. Zheng, and J. X. Li, "A high-selectivity dual-polarization filtering antenna with metamaterial for 5G application," Microw. Opt. Technol. Lett., Vol. 61, 63, 2018.
doi:10.1002/mop.31525
23. Pan, Y. M., P. F. Hu, X. Y. Zhang, and S. Y. Zheng, "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE T. Antenn. Propag., Vol. 64, 2010, 2016.
doi:10.1109/TAP.2016.2535498
24. Wu, T., J. Chen, and M. J. Wang, "Multi-state circularly polarized antenna based on the polarization conversion metasurface with gain enhancement," IEEE Access, Vol. 8, 84660, 2020.
doi:10.1109/ACCESS.2020.2992313
25. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high gain circularly polarized antenna using zero-index metamaterial," IEEE Antenn. Wirel. Pr., Vol. 18, 1129, 2019.
doi:10.1109/LAWP.2019.2910805
26. Hong, T., S. Wang, Z. Y. Liu, and S. X. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antenn. Wirel. Pr., Vol. 18, 167, 2019.
doi:10.1109/LAWP.2018.2884944
27. Fan, J. P., Y. Z. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies," J. Phys. D: Appl. Phys., Vol. 54, 115101, 2021.
doi:10.1088/1361-6463/abcdd0
28. Cheng, Y. Z., J. P. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615, 2019.
doi:10.1109/ACCESS.2019.2962299
29. Dwivedi, A. K., A. Sharma, A. K. Singh, and V. Singh, "Metamaterial inspired dielectric resonator MIMO antenna for isolation enhancement and linear to circular polarization of waves," Measurement, Vol. 182, 109681, 2021.
doi:10.1016/j.measurement.2021.109681
30. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE T. Antenn. Propag., Vol. 62, 1165, 2013.
doi:10.1109/TAP.2013.2293788
31. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE T. Antenn. Propag., Vol. 63, 3325, 2015.
doi:10.1109/TAP.2015.2429741
32. Majumder, B., K. Kandasamy, J. Mukherjee, and K. P. Ray, "Wideband compact directive metasurface enabled pair of slot antennas," Electron. Lett., Vol. 51, 1310, 2015.
doi:10.1049/el.2015.1998
33. Bai, H. and G. M. Wang, "A multistate high gain antenna based on metasurface," Int. J. RF Microw. C. E., Vol. 30, e22330, 2020.
34. Sievenpiper, D., L. J. Zhang, and R. F. J. Broas, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE T. Microw. Theory, Vol. 47, 2059, 1999.
doi:10.1109/22.798001
35. Chen, D. X., W. C. Yang, Q. Xue, and W. Q. Che, "Wideband high-gain multiresonance antenna based on polarization-dependent metasurface," Microw. Opt. Technol. Lett., Vol. 63, 638, 2021.
doi:10.1002/mop.32649
36. Wang, J., Y. Cheng, H. Luo, F. Chen, and L. Wu, "High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface," Int. J. Electron. Commun. (AEÜ), Vol. 151, 154222, 2022.
doi:10.1016/j.aeue.2022.154222
37. Cheng, Y. Z., J. Yu, and X. Li, "Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures," Appl. Phys. B --- Lasers O., Vol. 128, 1, 2022.
doi:10.1007/s00340-021-07724-4