1. Goudos, S., I. P. Dallas, S. Chatziefthymiou, and S. Kyriazakos, "A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications," Wireless Personal Communications, Vol. 97, No. 2, 1645-1675, 2017.
doi:10.1007/s11277-017-4647-8
2. Ebling, M., "Pervasive computing and the Internet of Things," IEEE Pervasive Computing, Vol. 15, No. 1, 2-4, 2016.
doi:10.1109/MPRV.2016.7
3. Fu, S., X. Zhao, C. Li, and Z. Wang, "A low-profile dual-band dual-polarized dipole antenna for 5G communication applications," Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022.
doi:10.2528/PIERL22051005
4. Jangid, M., Jaiverdhan, S. Yadav, and M. M. Sharma, "A CPW fed cross-shaped dual-band circularly polarized monopole antenna with strip/stub/slot resonator loadings," Progress In Electromagnetics Research M, Vol. 109, 113-123, 2022.
doi:10.2528/PIERM21122206
5. Wang, W. and G. Sun, "A dual-band circularly polarized antenna with "X" parastic structures," Progress In Electromagnetics Research Letters, Vol. 103, 89-97, 2022.
doi:10.2528/PIERL21110804
6. Jamshed, M. A., T. W. C. Brown, and F. Heliot, "Dual band two element rim based MIMO antennas with coupling manipulation for low SAR mobile handsets," Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022.
doi:10.2528/PIERC22022103
7. Anguera, J., A. Andujar, J. Jayasinghe, V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, T. Ali, and C. Cattani, "Fractal antennas: An historical perspective," Fractal and Fractional, Vol. 4, No. 1, 3, 2020.
doi:10.3390/fractalfract4010003
8. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas Propag. Mag., Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650
9. Chaudhary, A. K. and M. Manohar, "A modified SWB hexagonal fractal spatial diversity antenna with high isolation using meander line approach," IEEE Access, Vol. 10, 10238-10250, 2022.
doi:10.1109/ACCESS.2022.3144850
10. Liu, G., L. Xu, and Z. Wu, "Dual-band microstrip RFID antenna with tree-like fractal structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 976-978, 2013.
doi:10.1109/LAWP.2013.2276933
11. Velan, S., E. F. Sundarsingh, M. Kanagasabai, A. K. Sarma, C. Raviteja, R. Sivasamy, and J. K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710
12. Peristerianos, A., A. Theopoulos, A. G. Koutinos, T. Kaifas, and K. Siakavara, "Dual-band fractal semi-printed element antenna arrays for MIMO applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 730-733, 2016.
doi:10.1109/LAWP.2015.2470681
13. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 2895-2903, Jun. 2013.
doi:10.1109/TAP.2013.2251596
14. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1521-1529, Apr. 2015.
doi:10.1109/TAP.2015.2393869
15. Salucci, M., N. Anselmi, S. K. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP J. Wirel. Comm. Netw., Vol. 2019, No. 1, 68-83, Mar. 2019.
doi:10.1186/s13638-019-1386-4
16. Viani, F., M. Salucci, F. Robol, G. Oliveri, and A. Massa, "Design of a UHF RFID/GPS fractal antenna for logistics management," Journal of Electromagnetic Waves and Applications, Vol. 26, 480-492, 2012.
doi:10.1163/156939312800030640
17. Viani, F., M. Salucci, F. Robol, and A. Massa, "Multiband fractal ZigBee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1554-1562, 2012.
doi:10.1080/09205071.2012.704553
18. Goudos, S., Emerging Evolutionary Algorithms for Antennas and Wireless Communications, SciTech Publishing Inc., 2021.
19. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Self-adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1286-1298, Apr. 2011.
20. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," Int. J. Antennas Propag., Vol. 2016, 1-12, Jan. 2016.
21. Boursianis, A. D., M. S. Papadopoulou, M. Salucci, A. Polo, P. Sarigiannidis, K. Psannis, S. Mirjalili, S. Koulouridis, and S. K. Goudos, "Emerging swarm intelligence algorithms and their applications in antenna design: The GWO, WOA, and SSA optimizers," Appl. Sciences, Vol. 2021, No. 11, 1-27, Sep. 2021.
22. Campbell, S. D., R. P. Jenkins, P. J. O'Connor, and D. Werner, "The explosion of artificial intelligence in antennas and propagation: How deep learning is advancing our state of the art," IEEE Antennas Propag. Mag., Vol. 63, No. 3, 16-27, Jun. 2021.
23. Massa, A., G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, "Learning-by-examples techniques as applied to electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 516-541, 2018.
24. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, Oct. 2020.
25. Toktas, A., D. Ustun, and M. Tekbas, "Multi-ojective design of multi-layer radar absorber using surrogate-based optimization," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3318-3329, Aug. 2019.
26. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6052-6057, Sep. 2021.
27. Massa, A. and M. Salucci, "On the design of complex EM devices and systems through the System- by-Design paradigm --- A framework for dealing with the computational complexity," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1328-1343, Feb. 2022.
28. Salucci, M., G. Oliveri, M. A. Hannan, and A. Massa, "System-by-Design paradigm-based synthesis of complex systems: The case of spline-contoured 3D radomes," IEEE Antennas Propag. Mag., Vol. 64, No. 1, 72-83, Feb. 2022.
29. Oliveri, G., A. Gelmini, A. Polo, N. Anselmi, and A. Massa, "System-by-design multi-scale synthesis of task-oriented reflectarrays," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2867-2882, Apr. 2020.
30. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Multi-scale system-by-design synthesis of printed WAIMs for waveguide array enhancement," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 2, 84-96, Jun. 2017.
31. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015.
32. Oliveri, G., A. Polo, M. Salucci, G. Gottardi, and A. Massa, "SbD-based synthesis of low-profile WAIM superstrates for printed patch arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3849-3862, Jul. 2021.
33. Oliveri, G., M. Salucci, R. Lombardi, R. Flamini, C. Mazzucco, S. Verzura, and A. Massa, "Wide-angle impedance matching layer-enhanced dual-polarization sub-6 GHz wide-scan array for next generation base stations," IEEE Trans. Antennas Propag., 2022.
34. Salucci, M., L. Tenuti, G. Gottardi, M. A. Hannan, and A. Massa, "A System-by-Design method for efficient linear array miniaturization through low-complexity isotropic lenses," Electron. Lett., Vol. 55, No. 8, 433-434, Apr. 2019.
35. Arnieri, E., M. Salucci, F. Greco, L. Boccia, A. Massa, and G. Amendola, "An equivalent circuit/system-by-design approach to the design of reflection-type dual-band circular polarizers," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2364-2369, Mar. 2022.
36. Oliveri, G., P. Rocca, M. Salucci, and A. Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 6, 171-182, Oct. 2021.
37. Oliveri, G., F. Zardi, P. Rocca, M. Salucci, and A. Massa, "Building a smart EM environment --- AI-enhanced aperiodic micro-scale design of passive EM skins," IEEE Trans. Antennas Propag., 2022.
38. Ghouz, H. H. M., M. F. Abo Sree, and M. Aly Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.
39. Sediq, H. and Y. Mohammed, "Performance analysis of novel multi-band monopole antenna for various broadband wireless applications," Wireless Personal Communications, Vol. 112, No. 1, 571-585, 2020.
40. Contreras-Lizarraga, A., et al., "A high-performance antenna-plexer for mobile devices," 2020 IEEE International Ultrasonics Symposium (IUS), 1-3, 2020.
41. QORVO "Through the 5G antenna design maze with antenna-plexers,", 1-7, Oct. 2020, [Online], available: https://www.qorvo.com/resources/d/qorvo-through-5g-antenna-design-maze-with-antenna-plexer-white-paper.