Vol. 96
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-08-04
Broadband Radar Cross Section Reduction of Microstrip Antenna Using Polarization Conversion Metasurface
By
Progress In Electromagnetics Research B, Vol. 96, 67-86, 2022
Abstract
Low-Radar Cross Section antennas attract substantial attention in Stealth Technology. The Radar Cross Section reduction performance of the microstrip antennas should be improved since they contribute to the overall Radar Cross Section. A novel microstrip patch antenna with a polarization converter metasurface is proposed to extend the Radar Cross Section (RCS) reduction bandwidth. The metasurface uses metallic strip structures to obtain the required polarization conversion for Radar Cross Section reduction. The proposed patch antenna shows the overall RCS reduction bandwidth of 7.25 GHz-24.83 GHz (110%) as compared to the metal sheet and the Reference Patch antenna. 10 dB RCS reduction is obtained from 8.33 GHz-9.16 GHz (9.49%) and from 12.81 GHz-18.85 GHz (38.16%) as compared with the Reference Patch antenna. The RCS reduction of the antenna and the antenna radiation patterns are verified by numerical simulations and experimental observations. The main novelty of the proposed design is its wideband RCS reduction for Transverse Electric as well as Transverse Magnetic polarization with enhancement in antenna radiation pattern parameters. Significant RCS reduction can also be obtained for oblique incidence.
Citation
Krunal Patel, and Manjusha Joshi, "Broadband Radar Cross Section Reduction of Microstrip Antenna Using Polarization Conversion Metasurface," Progress In Electromagnetics Research B, Vol. 96, 67-86, 2022.
doi:10.2528/PIERB22060405
References

1. Zheng, Y.-J., J. Gao, X.-Y. Cao, S.-J. Li, and W. Q. Li, "Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1738-1741, 2015.
doi:10.1002/mop.29167

2. Yu, H., X. Cao, J. Gao, H. Yang, L. Jidi, J. Han, and T. Li, "Design of a wideband and reconfigurable polarization converter using a manipulable metasurface," Opt. Mater. Express, Vol. 8, 3373-3381, 2018.
doi:10.1364/OME.8.003373

3. Samadi, F. and A. Sebak, "Dielectric based triangle-type AMC structure for RCS reduction at mmWave frequencies," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1193-1194, 2020.
doi:10.1109/IEEECONF35879.2020.9329564

4. Liu, X., J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108

5. Kamal, B., J. Chen, Y. Ying, J. Ren, S. Ullah, and W. U. R. Khan, "High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface," Opt. Mater. Express, Vol. 11, 1343-1352, 2021.
doi:10.1364/OME.423324

6. Kumar, P. V. and B. Ghosh, "Characteristic mode analysis of linear to circular polarization conversion metasurface," Electromagnetics, Vol. 40, No. 8, 605-612, 2020.
doi:10.1080/02726343.2020.1838058

7. Liu, Y., Y. Hao, K. Li, and S. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
doi:10.1109/LAWP.2015.2430363

8. Haji-Ahmadi, M. J., V. Nayyeri, M. Soleimani, et al. "Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction," Scientific Reports, Vol. 7, 11437, 2017.
doi:10.1038/s41598-017-11714-y

9. Zhang, X. L., M. Niu, L. H. Su, and K. P. Song, "Radar cross section reduction based on metasurface," ChinaCom 2017: Communications and Networking, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 236, B. Li, L. Shu, D. Zeng (eds.), Springer, Cham, 2018.

10. Ra'di, Y., C. R. Simovski, and S. A. Tretyakov, "Thin perfect absorbers for electromagnetic waves: Theory, design and realizations," Phys. Rev. Appl., Vol. 3, No. 3, 037001, 2015.
doi:10.1103/PhysRevApplied.3.037001

11. Chen, H.-Y., P.-H. Zhou, L. Chen, and L.-J. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic RCS performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101

12. Pouyanfar, N., J. Nourinia, and C. Ghobadi, "Multiband and multifunctional polarization converter using an asymmetric metasurface," Scientific Reports, Vol. 11, 9306, 2021.
doi:10.1038/s41598-021-88771-x

13. Jafari, F. S., M. Naderi, A. Hatami, and F. B. Zarrabi, "Microwave Jerusalem Cross absorber by metamaterial split ring resonator load to obtain polarization independence with triple band application," AEU | International Journal of Electronics and Communications, Vol. 101, 138-144, 2019.

14. Wang, S., M. Chen, J. Wang, Z. Zhang, Z. Li, and Y. Li, "Radar cross section reduction of a microstrip antenna with CSRRs loaded on the ground," 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 670-673, Guilin, China, 2016.
doi:10.2528/PIERL16033004

15. Yang, D., H. Lin, and X. Huang, "Dual broadband metamaterial polarization converter in microwave regime," Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016.
doi:10.1117/1.JNP.14.016015

16. Shokati, E. and N. Granpateh, "High operative polarization converter using metasurface consisted of dual reciprocal L-shaped graphene array," Journal of Nanophotonics, Vol. 14, No. 1, 016015, 2020.
doi:10.1109/ACCESS.2020.3004127

17. Qi, Y., B. Zhang, C. Liu, and X. Deng, "Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction," IEEE Access, Vol. 8, 116675-116684, 2020.
doi:10.1049/iet-map.2018.6150

18. Li, J., K. T. Ali, X. Meng, J. Chen, G. Peng, and A. Zhang, "Wideband radar cross-section reduction of microstrip patch antenna using coding metasurface," IET Microwaves, Antennas and Propagation, Vol. 13, No. 10, 1719-1725, 2019.
doi:10.2528/PIER10122401

19. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

20. Yuan, H., H. Li, X. Fang, Y. Wang, and Q. Cao, "Active frequency selective surface absorber with point-to-point biasing control system," IEEE Antennas and Wireless Propagation Letters, 2021.

21. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, USA 2005.