Vol. 105
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-13
Guarantees of Minimum Performance Levels with Directed Energy Weapons
By
Progress In Electromagnetics Research Letters, Vol. 105, 27-32, 2022
Abstract
The integration of directed energy weapons (DEWs) into modern military platforms is of considerable interest to those examining the impact of emerging technology on the future fighting force. Hence the performance prediction of DEWs is of importance. The purpose of this study is to develop a simple framework where the minimum number of DEWs deployed in an operational setting can be determined, to achieve a desired level of performance.
Citation
Graham V. Weinberg, "Guarantees of Minimum Performance Levels with Directed Energy Weapons," Progress In Electromagnetics Research Letters, Vol. 105, 27-32, 2022.
doi:10.2528/PIERL22060101
References

1. Geis, II and J. P., "Directed energy weapons on the battlefield: A new vision for 2025," Occasional Paper 32, Center for Strategy and Technology, Air War College, Alabama, USA, 2003.

2. Nielsen, P. E., "Effects of directed energy weapons,", National Defence University, Washington, 1994.

3. Anderberg, B. and M. L.Wolbarsht, "High energy laser (HEL) weapons," Laser Weapons, Springer, Boston, 1992.

4. Lavan, M., "High energy laser systems for short range defense," Acta Physica Polonica Series A, Vol. 115, No. 6, 2009.

5. Bayram, Y., J. L. Volakis, S. K. Myoung, S. J. Doo, and P. Robin, "High power EMI on RF amplifier and digital modulation schemes," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, 849-860, 2008.
doi:10.1109/TEMC.2008.2004600

6. Radasky, W. A., "The threat of intentional interference (IEMI) to wired and wireless systems," 17th International Zurich Symposium on Electromagnetic Compatibility, 2006.

7. Hafften, M. and R. Stratton, "High energy laser weapon integration with ground vehicles," NATO Report presented to RTO AVT Symposium, RTO-MP-AVT-108, 2004.

8. Mantzouris, G., "Thermomechanical analysis of ground-based directed energy weapons on satellites and intercontinential ballistic missiles,", Master's Thesis, Naval Postgraduate School, Monterey, 2006.

9. Hu, F., D. X. Ou, and X.-L. Huang, UAV Swarm Networks: Models, Protocols and Systems, CRC Press, 2021.

10. Graswald, M., R. Gutser, F. Grabner, B. Meyer, C. Winter, and A. Oelerich, "Defeating UAVs through novel HPEM effectors," 31st International Symposium on Ballistics, India, 2019.

11. Yun, Q., B. Song, and Y. Pei, "Modeling the impact of high energy laser weapon on the mission effectiveness of unmanned combat aerial vehicles," IEEE Access, Vol. 8, 32246-32257, 2020.
doi:10.1109/ACCESS.2020.2973492

12. Lyu, C. and R. Zhan, "Global analysis of active defense technologies for unmanned aerial vehicle," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 1, 6-31, 2022.
doi:10.1109/MAES.2021.3115205

13. Weinberg, G. V., "Performance prediction of directed energy weapons," Progress In Electromagnetics Research M, Vol. 108, 79-88, 2022.
doi:10.2528/PIERM21111201

14. Feng, B., X. Liang, W. G. Du, C. L. Qiu, and R. S. Hou, "A stochastic vulnerability analysis method for armored vehicles with active protection systems," Journal of Physics: Conference Series, 1507 082051, 2020.

15. Yang, L. and J. Xu, "Analysis on the development of active protection system for tanks and armored vehicles," Journal of Physics: Conference Series, 1855 012034, 2021.

16. Weinberg, G. V., "Quantification of combat team survivability with high power RF directed energy weapons," Progress In Electromagnetics Research M, Vol. 102, 1-11, 2021.
doi:10.2528/PIERM21020406

17. Weinberg, G. V., "A queueing theoretic approach for performance prediction of collaborative active protection systems," Proceedings of the 24th International Congress on Modelling and Simulation (MODSIM), 904-910, Sydney, 2021.

18. Weinberg, G. V., "Determining performance limits for directed energy weapons in collaborative active protection systems," Proceedings of the 24th International Congress on Modelling and Simulation (MODSIM), 911-917, Sydney, 2021.

19. Weinberg, G. V. and M. M. Kracman, "Armoured fighting vehicle team performance prediction against missile attacks with directed energy weapons,", ArXiv Preprint, arXiv:2106.14381v1, 2021.

20. Sprangle, P., J. Penano, and B. Hafizi, "Optimum wavelength and power for efficient laser propagation in various atmospheric environments," Naval Research Laboratory Report, NRL/MR/6790-05-8907, 2005.