Vol. 175
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-07-27
Low Cost and High Performance 5-Bit Programmable Phased Array Antenna at Ku-Band
By
Progress In Electromagnetics Research, Vol. 175, 29-43, 2022
Abstract
We present a low-cost and high-performance 5-bit programmable phased array antenna at Ku-band, which consists of 1-bit reconfigurable radiation structures, digital phase shifters, and coplanar waveguide feeding network. The 1-bit reconfigurable radiation structure utilizes symmetric geometries and PIN diodes to form stable 180° phase difference. The digital phase shifter provides 168.75° phase difference and together with the radiation structure form a 348.75° phase coverage. The antenna operates between 14.4 and 15.4 GHz, and the overall array contains 24×2 elements with each of them being individually addressable. By changing the states of the diodes and thus adjusting the phase coding sequences of the array, the antenna achieves 0°-60° precise beam scanning at 14.8 GHz, with the sidelobe level, cross-polarization, and gain fluctuation being less than -16 dB, -26 dB, and 2.4 dB, respectively. A prototype was fabricated to verify the design, and the measurement results agree well with simulations. Compared with traditional phased arrays composed of numerous phase shifters and T/R components, the proposed antenna features high performance, high flexibility, low profile, and low cost. The antenna provides a new and feasible solution of wavefront steering and will benefit the various application scenarios.
Citation
Xin Li, Han Qing Yang, Rui Wen Shao, Feng Zhai, Guo Biao Liu, Zheng Xing Wang, Hong Fei Gao, Ge Fan, Jun Wei Wu, Qiang Cheng, and Tie-Jun Cui, "Low Cost and High Performance 5-Bit Programmable Phased Array Antenna at Ku-Band," Progress In Electromagnetics Research, Vol. 175, 29-43, 2022.
doi:10.2528/PIER22052806
References

1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Norwood, MA, USA, 2005.

2. Valavan, S. E., D. Tran, A. G. Yarovoy, and A. G. Roederer, "Dual-band wide-angle scanning planar phased array in X/Ku-bands," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2514-2521, May 2014.
doi:10.1109/TAP.2014.2307336

3. Yang, G., J. Li, R. Xu, Y. Ma, and Y. Qi, "Improving the performance of wide-angle scanning array antenna with a high-impedance periodic structure," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1819-1822, 2016.
doi:10.1109/LAWP.2016.2537850

4. Beenamole, K. S., P. N. S. Kutiyal, U. K. Revankar, and V. M. Pandharipande, "Resonant microstrip meander line antenna element for wide scan angle active phased array antennas," Microw. Opt. Technol. Lett., Vol. 50, No. 7, 1737-1740, 2008.
doi:10.1002/mop.23531

5. Yin, L., P. Yang, Y. Gan, F. Yang, S. Yang, and Z. Nie, "A low Cost, low in-Band RCS microstrip phased-array antenna with integrated 2-bit phase shifter," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 4517-4526, Aug. 2021.
doi:10.1109/TAP.2020.3048575

6. Li, X., Z. H. Wu, and Q. Cheng, "A 1-Bit reconfigurable antenna in Ku-band," Proc. Cross Strait Radio Sci. Wirel. Technol. Conf., CSRSWTC1, 7-9, 2021.
doi:10.1109/CSRSWTC52801.2021.9631752

7. Xiao, Y., F. Yang, S. Xu, M. Li, K. Zhu, and H. Sun, "Design and implementation of a wideband 1-Bit transmitarray based on a Yagi-vivaldi unit cell," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 4229-4234, July 2021.
doi:10.1109/TAP.2020.3048496

8. Deng, C., D. Liu, B. Yektakhah, and K. Sarabandi, "Series-fed beam-steerable millimeter-wave antenna design with wide spatial coverage for 5G mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3366-3376, May 2020.
doi:10.1109/TAP.2019.2963583

9. Zhang, X. G., W. X. Jiang, H. W. Tian, Z. X. Wang, Q. Wang, and T. J. Cui, "Pattern-reconfigurable planar array antenna characterized by digital coding method," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1170-1175, February 2020.
doi:10.1109/TAP.2019.2938678

10. Wan, X., et al. "Reconfigurable sum and difference beams based on a binary programmable metasurface," IEEE Antennas and Wireless Propag. Lett., Vol. 20, No. 3, 381-385, March 2021.
doi:10.1109/LAWP.2021.3050808

11. Wang, X. Y., S. C. Tang, and J. X. Chen, "Differential-fed pattern-reconfigurable dielectric patch antenna and array with low cross-polarization," IEEE Trans. Antennas Propag., Vol. 70, No. 5, 3870-3875, 2022.
doi:10.1109/TAP.2021.3125363

12. Xiao, S., C. Zheng, M. Li, J. Xiong, and B. Z. Wang, "Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2364-2369, May 2015.
doi:10.1109/TAP.2015.2410311

13. Zhang, Z., S. Cao, and J. Wang, "Azimuth-pattern reconfigurable planar antenna design using characteristic mode analysis," IEEE Access, Vol. 9, 60043-60051, 2021.
doi:10.1109/ACCESS.2021.3073706

14. Huang, C., B. Sun, W. B. Pan, and X. G. Luo, "Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface," Sci. Rep., Vol. 7, 42302, 2017.
doi:10.1038/srep42302

15. Dai, J. Y., L. X. Yang, J. C. Ke, et al. "High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface," Laser & Photonics Reviews, Vol. 14, 1900133, 2020.
doi:10.1002/lpor.201900133

16. Wang, Q., et al. "Millimeter-wave digital coding metasurfaces based on nematic liquid crystals," Adv. Theory Simul., Vol. 2, No. 12, Art. No. 1900141, 2019.

17. Yi, D., X. Wei, and Y. Xu, "Tunable microwave absorber based on patterned graphene," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 8, 2819-2826, August 2017.
doi:10.1109/TMTT.2017.2678501

18. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light-Sci. Appl., Vol. 3, No. 10, 218, October 2014.
doi:10.1038/lsa.2014.99

19. Yang, H., et al. "A 1-bit 10 ⅹ 10 reconfigurable reflectarray antenna: Design, optimization, and experiment," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2246-2254, June 2016.
doi:10.1109/TAP.2016.2550178

20. Wang, Y., S. H. Xu, F. Yang, and D. H. Werner, "1 bit dual-linear polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles," IEEE Trans. Antenna Propag., Vol. 69, No. 2, 1188-1192, February 2021.
doi:10.1109/TAP.2020.3005713

21. Yang, J., et al. "Folded transmitarray antenna with circular polarization based on metasurface," IEEE Trans. Antenna Propag., Vol. 69, No. 2, 806-814, February 2021.
doi:10.1109/TAP.2020.3016170

22. Hu, J., Z. Hao, and Y. Wang, "A wideband array antenna with 1-bit digital-controllable radiation beams," IEEE Access, Vol. 6, 10858-10866, 2018.
doi:10.1109/ACCESS.2018.2801940

23. Liu, P., Y. Li, and Z. Zhang, "Circularly polarized 2 Bit reconfigurable beam-steering antenna array," IEEE Trans. Antenna Propag., Vol. 68, No. 3, 2416-2421, March 2020.
doi:10.1109/TAP.2019.2939669

24. CST MWS, Accessed: 2020, , [Online], Available: https://www.cst.com/products/cstmws.

25. Henoch, B. T. and P. Tamm, "A 360 reflection-type diode phase modulator," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 1, 103-105, January 1971.
doi:10.1109/TMTT.1971.1127456

26. Hardin, R. N., E. J. Downey, and J. Munushian, "Electronically variable phase shifter utilizing variable capacitance diodes," Proc. IRE, Vol. 48, No. 5, 944-945, May 1960.

27. Lin, C., S. Chang, C. Chang, and Y. Shu, "Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1862-1868, September 2007.
doi:10.1109/TMTT.2007.903346

28. Ellinger, F., R. Vogt, and W. Bachtold, "Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 5, 913-917, May 2001.
doi:10.1109/22.920148

29. Gupta, R. K., S. E. Anderson, and W. J. Getsinger, "Impedance-transforming 3-dB 90 hybrids," IEEE Trans. Microw. Theory Tech., Vol. 35, No. 12, 1303-1307, December 1987.
doi:10.1109/TMTT.1987.1133852

30. Pozar, D. M., Microwave Engineering, Wiley, Hoboken, NJ, USA, 2009.