Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-28
A Novel Fractal Arrow-Shaped mmWave Flexible Antenna for IoT and 5G Communication Systems
By
Progress In Electromagnetics Research Letters, Vol. 107, 9-17, 2022
Abstract
In this paper, a novel flexible antenna for the new ISM band is proposed. A multi-objective optimization based on DDEA-SE is performed to optimize the antenna bandwidth and gain. The proposed optimized antenna has a 4 dB maximum realized gain and 50% maximum radiation efficiency on the ISM band. A fractal structure is used in this design to achieve a multi-band antenna. The bandwidth of this antenna covers several 5G bands. This multi-band antenna is fabricated on a cotton substrate. This antenna has a small dimension which makes it suitable for 5G applications. The bending tests are performed, and both simulation and measurement results show the good performance of the proposed antenna.
Citation
Nazih Khaddaj Mallat, Alireza Jafarieh, Hamidreza Noorollahi, and Mahdi Nouri, "A Novel Fractal Arrow-Shaped mmWave Flexible Antenna for IoT and 5G Communication Systems," Progress In Electromagnetics Research Letters, Vol. 107, 9-17, 2022.
doi:10.2528/PIERL22052405
References

1. Ozpinar, H., S. Aksimsek, and N. T. Tokan, "A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications," IEEE Transactions on Vehicular Technology, Vol. 69, No. 3, 2389-2397, 2020.
doi:10.1109/TVT.2020.2966009

2. Choi, J., J. Park, Y. Youn, W. Hwang, H. Seong, Y. N. Whang, and W. Hong, "Frequency- adjustable planar folded slot antenna using fully integrated multithrow function for 5G mobile devices at millimeter-wave spectrum," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 5, 1872-1881, 2020.
doi:10.1109/TMTT.2019.2961088

3. Nouri, M., S. A. Aghdam, A. Jafarieh, N. K. Mallat, M. H. Jamaluddin, and M. Dor-Emami, "An optimized small compact rectangular antenna with meta-material based on fast multi-objective optimization for 5G mobile communication," Journal of Computational Electronics, 1-9, 2021.

4. Nouri, M., S. Abazari Aghdam, A. Jafarieh, J. Bagby, and S. Sahebghalam, "A wideband millimeter-wave antenna based on quasi Yagi antenna with MIMO circular array antenna beamforming for 5G wireless networks," Microwave and Optical Technology Letters, Vol. 61, No. 7, 1810-1814, 2019.
doi:10.1002/mop.31790

5. Mabrouk, I. B., M. Nedil, T. A. Denidni, and A. R. Sebak, "A novel design of radiation pattern-reconfigurable antenna system for millimeter-wave 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2585-2592, 2019.
doi:10.1109/TAP.2019.2952607

6. Nouri, M., A. Jafarieh, H. Behroozi, N. K. Mallat, M. H. Jamaluddin, and S. A. Aghdam, "Compact 5G millimeter-wave dual-band filter with application in filtenna," Microwave and Optical Technology Letters, Vol. 63, No. 2, 620-625, 2021.
doi:10.1002/mop.32637

7. Mallat, N. K., M. Nouri, S. A. Aghdam, M. T. Zia, B. Harb, and A. Jafarieh, "A dual circularly reconfigurable polarization patch antenna for fifth generation mobile communication systems," Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020.
doi:10.2528/PIERC20053002

8. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, J. Rodriguez, and S. Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
doi:10.1109/ACCESS.2019.2933913

9. Wagih, M., A. S. Weddell, and S. Beeby, "Millimeter-wave textile antenna for on-body RF energy harvesting in future 5G networks," 2019 IEEE Wireless Power Transfer Conference (WPTC), 245-248, IEEE, June 2019.
doi:10.1109/WPTC45513.2019.9055541

10. Jilani, S. F., Q. H. Abbasi, and A. Alomainy, "Inkjet-printed millimetre-wave PET-based flexible antenna for 5G wireless applications," 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), 1-3, IEEE, August 2018.

11. Jafarieh, A., M. Nouri, and H. Behroozi, "Optimized 5G-MMW compact Yagi-Uda antenna based on machine learning methodology," 2021 29th Iranian Conference on Electrical Engineering (ICEE), 751-756, IEEE, May 18, 2021.

12. Pietrenko Dabrowska, A. and S. Koziel, "Computationally efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring," IET Microwaves, Antennas & Propagation, Vol. 14, No. 2, 165-170, 2020.
doi:10.1049/iet-map.2019.0358

13. Wang, H., Y. Jin, C. Sun, and J. Doherty, "Offline data-driven evolutionary optimization using selective surrogate ensembles," IEEE Transactions on Evolutionary Computation, Vol. 23, No. 2, 203-216, 2018.
doi:10.1109/TEVC.2018.2834881