Vol. 111
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-14
A Novel Low Profile Circularly Polarized GNSS Antenna with Wide 3 dB Axial Ratio Beamwidth
By
Progress In Electromagnetics Research M, Vol. 111, 199-208, 2022
Abstract
A novel low-profile GNSS microstrip circular polarization antenna is proposed and analyzed. Circular polarization is realized by asymmetric structure patch, and arc structure loaded on the main radiator can keep two modes orthogonal over a wide-angle range, so that the antenna has an extremely wide 3 dB axial ratio beamwidth (ARBW). The far-field AR beamwidths obtained are 232° and 212° respectively in the main plane of φ=0° and φ=90°. In φ=45° and φ=135°, 3 dB AR beamwidths are 241° and 244°, far exceeding the 120° required for satellite applications. In the whole CP band, 78.95% of the beam width exceeds 180°. The profile is only 0.0156λ0, which is suitable, especially, for portable wireless systems or devices. The return loss bandwidth of -10 dB is 5.13% (1.52 GHz-1.6 GHz), which covers BeiDou Navigation System B1 (1.561 GHz). The axial ratio bandwidth is 1.28% (1.55 GHz-1.57 GHz), and the in-band peak gain is 4.09 dBi.
Citation
Jingchun Zhai, Gengliang Chen, Wen Wang, Yiqing Liu, Luzhen Wang, and Zhuopeng Wang, "A Novel Low Profile Circularly Polarized GNSS Antenna with Wide 3 dB Axial Ratio Beamwidth," Progress In Electromagnetics Research M, Vol. 111, 199-208, 2022.
doi:10.2528/PIERM22051602
References

1. Zheng, D. Z., Y. Luo, Q. X. Chu, and , "Cavity-backed self-phased circularly-polarized multi-dipole antenna with wide axial-ratio beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1998-2001, 2017.
doi:10.1109/LAWP.2017.2692769

2. Mondal, T., T. Chandra, P. Kuila, et al. "A flower-fractal based circularly polarized wide beam-width folded antenna," 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), IEEE, 2020.

3. Ko, T.-H. and J.-S. Row, "Circularly polarized slot antenna with three-dimensional ring-shaped ground plane," Microwave and Optical Technology Letters, Vol. 60, No. 4, 1013-1016, 2018.
doi:10.1002/mop.31097

4. Bai, X., et al., "Millimeter-wave circularly polarized tapered-elliptical cavity antenna with wide axial-ratio beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 811-814, 2016.
doi:10.1109/TAP.2015.2507171

5. Zuo, S. L., L. Yang, and Z. Y. Zhang, "Dual-band CP antenna with a dual-ring cavity for enhanced beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 867-870, 2015.
doi:10.1109/LAWP.2014.2382580

6. Yuan, B., X. H. Zhang, Z. F. Hu, et al. "An axial-ratio beamwidth enhancement of patch antenna with diagonal slot and square ring," Microwave and Optical Technology Letters, Vol. 58, No. 3, 672-675, 2016.
doi:10.1002/mop.29646

7. Wang, Y., S. Xiao, Y. Shang, et al. "A compact and dual-band circularly polarized petal-shaped antenna with broad beamwidth for multiple global navigation satellite systems," 2015 IEEE MTT- S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), IEEE, 2015.

8. Long, Z., S. Gao, L. Qi, et al. "Inverted-S antenna with wideband circular polarization and wide axial ratio beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1740-1748, 2017.
doi:10.1109/TAP.2016.2629467

9. Luo, Y., et al., "A low-profile wide-beamwidth circularly-polarized antenna via two pairs of parallel dipoles in a square contour," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 931-936, 2015.
doi:10.1109/TAP.2014.2387438

10. Zhang, X., et al., "Pin-loaded circularly-polarized patch antennas with wide 3-dB axial ratio beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 521-528, 2017.
doi:10.1109/TAP.2016.2632728

11. Wang, M. S., X. Zhu, Y. Guo, et al. "Compact circularly polarized patch antenna with wide axial ratio beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 714-718, 2018.
doi:10.1109/LAWP.2018.2813160

12. Nasimuddin, Y. S. Anjani, and A. Alphones, "A wide-beam circularly polarized asymmetric-microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3764-3768, 2015.
doi:10.1109/TAP.2015.2438397

13. Nasimuddin, M. Chia, "Dual-polarized/dual-band antenna with compact size for GNSS and 5G NR applications," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-5, 2022.

14. Rajagopal, D., Nasimuddin, and A. Alphones, "A clover-shaped circularly polarized antenna for satellite systems," 2020 IEEE Asia-Pacific Microwave Conference (APMC 2020), IEEE, 2020.

15. Liu, S., D. Yang, and T. Pan, "A low-profile circularly polarized metasurface antenna with wide axial-ratio beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1438-1442, 2019.
doi:10.1109/LAWP.2019.2919533

16. Wang, J., "Antennas for global navigation satellite system (GNSS)," Proceedings of the IEEE, Vol. 100, No. 7, 2349-2355, 2012.
doi:10.1109/JPROC.2011.2179630

17. Ameen, M., V. R. Ramireddy, and R. K. Chaudhary, "A compact CRLH-TL loaded circularly polarized antenna with improved 3-dB axial-ratio beamwidth for small satellite applications," 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), IEEE, 2019.

18. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.

19. Ray, M. K., K. Mandal, and N. Nasimuddin, "Low-profile circularly polarized patch antenna with wide 3 dB beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2473-2477, 2019.
doi:10.1109/LAWP.2019.2940703

20. Pakkathillam, J. K. and M. Kanagasabai, "Circularly polarized broadband antenna deploying fractal slot geometry," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1286-1289, 2015.
doi:10.1109/LAWP.2015.2402286

21. Ray, M. K., K. Mandal, N. Nasimuddin, et al. "Two-pair slots inserted CP patch antenna for wide axial ratio beamwidth," IEEE Access, Vol. 8, 223316-223324, 2020.
doi:10.1109/ACCESS.2020.3043406

22. Wu, Y., K. Ding, G. Li, et al. "A compact hollow dual circularly polarized antenna with folded coupled feed structure for distance detection application," IEEE Access, Vol. 8, 90570-90576, 2020.
doi:10.1109/ACCESS.2020.2994106