Vol. 175
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-07-14
Machine-Learning-Enabled Recovery of Prior Information from Experimental Breast Microwave Imaging Data (Invited)
By
Progress In Electromagnetics Research, Vol. 175, 1-11, 2022
Abstract
We demonstrate the recovery of simple geometric and permittivity information of breast models in an experimental microwave breast imaging system using a synthetically trained machine learning workflow. The recovered information consists of simple models of adipose and fibroglandular regions. The machine learning model is trained on a labelled synthetic dataset constructed over a range of possible adipose and fibroglandular regions and the trained neural network predicts the geometry and average permittivty of the adipose and fibroglandular regions from calibrated experimental data. The proposed workflow is tested on two different experimental models of the human breast. The first model is comprised of two simple, symmetric phantoms representing the adipose and fibroglandular regions of the breast that match the model used to train the neural network. The second, more realistic model replaces the symmetric fibroglandular phantom with an irregularly shaped, MRI-derived fibroglandular phantom. We demonstrate the ability of the machine learning workflow to accurately recover geometry and complex valued average permittivity of the fibroglandular region for the simple case, and to predict a symmetric convex hull that is a reasonable approximation to the proportions of the MRI-derived fibroglandular phantom.
Citation
Keeley Edwards, Joe LoVetri, Colin Gilmore, and Ian Jeffrey, "Machine-Learning-Enabled Recovery of Prior Information from Experimental Breast Microwave Imaging Data (Invited)," Progress In Electromagnetics Research, Vol. 175, 1-11, 2022.
doi:10.2528/PIER22051601
References

1. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics (Lancaster), Vol. 37, No. 8, 4210-4226, 2010.

2. Asefi, M., A. Baran, and J. LoVetri, "An experimental phantom study for air-based quasi-resonant microwave breast imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3946-3954, 2019.
doi:10.1109/TMTT.2019.2906619

3. AlSawaftah, N., S. El-Abed, S. Dhou, and A. Zakaria, "Microwave imaging for early breast cancer detection: Current state, challenges, and future directions," Journal of Imaging, Vol. 8, No. 5, 2022, [Online], Available: https://www.mdpi.com/2313-433X/8/5/123.
doi:10.3390/jimaging8050123

4. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine & Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

5. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013

6. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010

7. Rubaek, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993

8. Abubakar, A., T. M. Habashy, G. Pan, M.-K. Li, and , "Application of the multiplicative regularized Gauss-Newton algorithm for three-dimensional microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2431-2441, 2012.
doi:10.1109/TAP.2012.2189712

9. Meaney, P. M. and K. D. Paulsen, "Theoretical premises and contemporary optimizations of microwave tomography," Microwave Technologies, Ch. 14, D. A. Kishk and D. K. H. Yeap, Eds., IntechOpen, Rijeka, 2022, [Online], Available: https://doi.org/10.5772/intechopen.103011.

10. Abdollahi, N., D. Kurrant, P. Mojabi, M. Omer, E. Fear, and J. LoVetri, "Incorporation of ultrasonic prior information for improving quantitative microwave imaging of breast," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 98-110, 2019.
doi:10.1109/JMMCT.2019.2905344

11. Kurrant, D., A. Baran, J. LoVetri, and E. Fear, "Integrating prior information into microwave tomography Part 1: Impact of detail on image quality," Medical Physics, Vol. 44, No. 12, 6461-6481, 2017, [Online], Available: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12585.
doi:10.1002/mp.12585

12. Kurrant, D., E. Fear, A. Baran, and J. LoVetri, "Integrating prior information into microwave tomography Part 2: Impact of errors in prior information on microwave tomography image quality," Medical Physics (Lancaster), Vol. 44, No. 12, 6482-6503, 2017.

13. Ostadrahimi, M., P. Mojabi, A. Zakaria, J. LoVetri, and L. Shafai, "Enhancement of Gauss-Newton inversion method for biological tissue imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3424-3434, 2013.
doi:10.1109/TMTT.2013.2273758

14. Neira, L. M., B. D. Van Veen, and S. C. Hagness, "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6002-6014, 2017.
doi:10.1109/TAP.2017.2751668

15. Edwards, K., N. Geddert, K. Krakalovich, R. Kruk, M. Asefi, J. Lovetri, C. Gilmore, I. Jeffrey, and , "Stored grain inventory management using neural-network-based parametric electromagnetic inversion," IEEE Access, Vol. 8, 207182-207192, 2020.
doi:10.1109/ACCESS.2020.3038312

16. Li, L., L. Wang, F. Teixeira, L. Che, and T. Cui, "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1819-1825, 2018.
doi:10.1109/TAP.2018.2885437

17. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221

18. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "Full 3D microwave breast imaging using a deep-learning technique," Journal of Imaging, Vol. 6, No. 8, 80, Aug. 2020, [Online], Available: http://dx.doi.org/10.3390/jimaging6080080.
doi:10.3390/jimaging6080080

19. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "A multi-branch deep convolutional fusion architecture for 3D microwave inverse scattering: Stored grain application," Neural Computing and Applications, 2021, [Online], Available: https://doi.org/10.1007/s00521-021-05970-3.

20. Guo, R., Z. Lin, T. Shan, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Physics embedded deep neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Early Access Article, 1-1, 2021.

21. Zhou, Y., Y. Zhong, Z.Wei, T. Yin, and X. Chen, "An improved deep learning scheme for solving 2- D and 3-D inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2853-2863, 2021.
doi:10.1109/TAP.2020.3027898

22. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402

23. Gilmore, C., M. Asefi, J. Paliwal, and J. LoVetri, "Industrial scale electromagnetic grain bin monitoring," Computers and Electronics in Agriculture, Vol. 136, 210-220, 2017.
doi:10.1016/j.compag.2017.03.005

24. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Vol. 11, Wiley, 1991.

25. Zhdanov, M. S., Geophysical Inverse Theory and Regularization Problems, Vol. 36, Elsevier, 2002.
doi:10.1016/S0076-6895(02)80037-3

26. Guo, R., X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Supervised descent learning technique for 2-D microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3550-3554, 2019.
doi:10.1109/TAP.2019.2902667

27. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley Online Library, 2018.
doi:10.1002/9781119311997

28. Nemez, K., M. Asefi, A. Baran, and J. LoVetri, "A faceted magnetic field probe resonant chamber for 3D breast MWI: A synthetic study," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-3, IEEE, 2016.

29. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705

30. LoVetri, J., M. A. Asefi, C. Gilmore, and I. Jeffrey, "Innovations in electromagnetic imaging technology: The stored-grain-monitoring case," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 33-42, 2020.
doi:10.1109/MAP.2020.3003206

31. Li, M., R. Guo, K. Zhang, Z. Lin, F. Yang, S. Xu, X. Chen, A. Massa, and A. Abubakar, "Machine learning in electromagnetics with applications to biomedical imaging: A review," IEEE Antennas and Propagation Magazine, Vol. 63, No. 3, 39-51, 2021.
doi:10.1109/MAP.2020.3043469

32. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050

33. Edwards, K., V. Khoshdel, M. Asfi, J. LoVetri, C. Gilmore, and I. Jeffrey, "A machine learning workflow for tumour detection in breasts using 3D microwave imaging," Electronics, Vol. 10, No. 6, 2021, [Online], Available: https://www.mdpi.com/2079-9292/10/6/674.
doi:10.3390/electronics10060674

34. Reimer, T., M. Solis, and S. Pistorius, "The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging," Diagnostics, Vol. 10, 411, June 2020.
doi:10.3390/diagnostics10060411

35. Zakaria, A., I. Jeffrey, J. LoVetri, and A. Zakaria, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706

36. Geddert, N., "An electromagnetic hybridizable discontinuous Galerkin method forward solver with high-order geometry for inverse problems,", 2020.