Vol. 111
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-18
Switchable Active Metasurface for Dual Band Gain Enhancement
By
Progress In Electromagnetics Research M, Vol. 111, 209-219, 2022
Abstract
A novel active metasurface which is switchable to accomplish dual band gain enhancement is reported. The metasurface is used as a superstrate above the dual band patch antenna working at 2.4 GHz and 4.6 GHz. The gain of the antenna is enhanced by 3.5 dB at both frequencies. Switching between the frequencies is enabled by a p-i-n diode. When the p-i-n diode is in OFF state, gain is enhanced at 2.4 GHz, while gain is reduced at 4.6 GHz and when the p-i-n diode is in ON state, gain is enhanced at 4.6 GHz, but reduced at 2.4 GHz. The diode is controlled by biasing with a regulated DC source. The efficiency of the antenna is 70% at 2.4 GHz and 85% at 4.6 GHz. The simulated and measured results show good agreement. The distance between the antenna and the superstrate is 6 mm, which is 0.048λ at 2.4 GHz and 0.092λ at 4.6 GHz. This superstrate can be used in WLAN and Sub-6 GHz 5G applications.
Citation
Arun Shaji B K, and Anju Pradeep, "Switchable Active Metasurface for Dual Band Gain Enhancement," Progress In Electromagnetics Research M, Vol. 111, 209-219, 2022.
doi:10.2528/PIERM22051201
References

1. Liu, S., D. Yang, Y. Chen, K. Sun, X. Zhang, and Y. Xiang, "Low-profile broadband metasurface antenna under multimode resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1696-1700, 2021.
doi:10.1109/LAWP.2021.3094302

2. Wang, Y., K. Chen, Y. Li, and Q. Cao, "Design of nonresonant metasurfaces for broadband RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 346-350, 2021.
doi:10.1109/LAWP.2021.3049882

3. Huang, H.-F. and J. Zhang, "High-efficiency multifunction metasurface based on polarization sensitivity," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1508-1512, 2021.
doi:10.1109/LAWP.2021.3089283

4. Lou, Q. and Z. N. Chen, "Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6977-6981, 2021.
doi:10.1109/TAP.2021.3076312

5. Su, J., Y. Guo, X. Chen, and W. Zhang, "A dual-wideband polarization-insensitive linear polarization converter based on metasurface," Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022.
doi:10.2528/PIERM22012901

6. Khajeh-Khalili, F. and Y. Dohni-Zadeh, "High-gain multi-layer antenna using metasurface for application in terahertz communication systems," Int. J. Electron. Device Phys., Vol. 4, 007, 2020.

7. Kim, S., A. Li, J. Lee, and D. F. Sievenpiper, "Active self-tuning metasurface with enhanced absorbing frequency range for suppression of high-power surface currents," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2759-2767, 2021.
doi:10.1109/TAP.2020.3032834

8. Shrestha, S., A. A. Baba, S. M. Abbas, M. Asadnia, and R. M. Hashmi, "A horn antenna covered with a 3D-printed metasurface for gain enhancement," Electronics, Vol. 10, No. 2, 119, 2021.
doi:10.3390/electronics10020119

9. Almizan, H., Z. A. A. Hassain, T. A. Elwi, and S. M. Al-Sabti, "Controlling gain enhancement using a reconfigurable metasurface layer," 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 1-6, 2021.

10. Ma, Q., G. D. Bai, H. B. Jing, et al. "Smart metasurface with self-adaptively reprogrammable functions," Light Sci. Appl., Vol. 8, No. 98, 2019.

11. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280

12. Bai, H., G.-M. Wang, and X.-J. Zou, "A wideband and multi-mode metasurface antenna with gain enhancement," AEU --- International Journal of Electronics and Communications, Vol. 126, 153402, 2020.
doi:10.1016/j.aeue.2020.153402

13. Dawar, P. and M. Abdalla, "Miniaturized dual-band embedded NZI metasurface antenna with front-to-back radiation ratio enhancement," Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022.
doi:10.2528/PIERB22020404

14. Lou, T., X.-X. Yang, G. He, W. Che, and S. Gao, "Dual-polarized nonreciprocal spatial amplification active metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1789-1793, 2021.
doi:10.1109/LAWP.2021.3097062

15. Phon, R. and S. Lim, "Self-reconfigurable dual-mode metasurface," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 885-886, 2020.
doi:10.1109/IEEECONF35879.2020.9329462

16. Zhang, J., Y. Liu, Y. Jia, and R. Zhang, "High-gain Fabry-Perot antenna with reconfigurable scattering patterns based on varactor diodes," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 2, 922-930, 2022.
doi:10.1109/TAP.2021.3111234

17. Bai, L., X. G. Zhang, Q. Wang, C. X. Huang, W. X. Jiang, and T. J. Cui, "Dual-band reconfigurable metasurface-assisted Fabry-Perot antenna with high-gain radiation and low scattering," IET Microw. Antennas Propag., Vol. 14, 1933-1942, 2020.
doi:10.1049/iet-map.2020.0415

18. Burokur, S. N., J. P. Daniel, P. Ratajczak, and A. de Lustrac, "Tunable bilayered metasurface for frequency reconfigurable directive emissions," Appl. Phys. Lett., Vol. 97, 064101, 2010.
doi:10.1063/1.3478214

19. Zhou, E., Y. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with reflective focusing metasurface," AEU --- International Journal of Electronics and Communications, Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709

20. Wang, J., Y. Cheng, H. Luo, F. Chen, and L. Wu, "High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface," AEU --- International Journal of Electronics and Communications, Vol. 151, 154222, 2022.
doi:10.1016/j.aeue.2022.154222

21. Chen, X., T. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

22. Chen, Y. F., P. Fischer, and F. W. Wise, "Negative refraction at optical frequencies in nonmagnetic two-component molecular media," Phys. Rev. Lett., Vol. 95, No. 6, 067402, 2005.
doi:10.1103/PhysRevLett.95.067402

23. Balanis, C. A., Antenna Theory: Analysis and Design, Vol. 4th, John Wiley & Sons, 2016.

24. Skyworks, , SMP1320 Series: Low Resistance, Low Capacitance, Plastic Packaged PIN Diodes, 200047S, Nov. 2018.