Vol. 105
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-01
Projection Constraint Null Broadening and Deepening Method for Conjugate Array
By
Progress In Electromagnetics Research Letters, Vol. 105, 121-129, 2022
Abstract
The performance of the Capon beamforming sharply decreases against strong directional and large deviation interference. In order to reduce the impact of the abnormal interference, this paper proposes a large degree of freedom null broadening beamforming for non-circular signals. The signal vector is first extended by a uniform linear conjugate array. The covariance matrix of the array is then reconstructed by projection transformation and diagonal loading technique. Finally, the beamforming is constrained by the characteristic subspace of the guide vector matrix, and the analytic expression of the optimal weights of the method is derived. The numerical simulations demonstrate that the proposed null broadening method has the advantages of high degrees of freedom and strong parameter selection robustness.
Citation
Shi-Jing Xiao, Bin Li, and Qing Wang, "Projection Constraint Null Broadening and Deepening Method for Conjugate Array," Progress In Electromagnetics Research Letters, Vol. 105, 121-129, 2022.
doi:10.2528/PIERL22051103
References

1. Jian, L. and S. Petre, Robust Adaptive Beamforming, John Wiley & Sons, Inc., 2005.

2. Chen, X., T. Shu, K.-B. Yu, J. He, and W. Yu, "Joint adaptive beamforming techniques for distributed array radars in multiple mainlobe and sidelobe jammings," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 2, 248-252, 2019.
doi:10.1109/LAWP.2019.2958687

3. Chen, X., et al. "Magnetic metamirrors as spatial frequency filters," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5505-5511, 2020.
doi:10.1109/TAP.2020.2977736

4. Sohrabi, F., Z. Chen, and W. Yu, "Deep active learning approach to adaptive beamforming for mmwave initial alignment," IEEE Journal on Selected Areas in Communications, Vol. 39, No. 8, 2347-2360, 2021.
doi:10.1109/JSAC.2021.3087234

5. Bi, Y., "Robust adaptive beamforming based on interference-plus-noise covariance matrix reconstruction method," Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020.
doi:10.2528/PIERM20082003

6. Zhang, M., A. Zhang, and Q. Yang, "Robust adaptive beamforming based on conjugate gradient algorithms," IEEE Transactions on Signal Processing, Vol. 64, No. 22, 6046-6057, 2016.
doi:10.1109/TSP.2016.2605075

7. Huang, Y., S. A. Vorobyov, and Z.-Q. Luo, "Quadratic matrix inequality approach to robust adaptive beamforming for general-rank signal model," IEEE Transactions on Signal Processing, Vol. 68, 2244-2255, 2020.
doi:10.1109/TSP.2020.2981208

8. Salvati, D., C. Drioli, and G. L. Foresti, "A low-complexity robust beamforming using diagonal unloading for acoustic source localization," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 26, No. 3, 609-622, 2018.
doi:10.1109/TASLP.2017.2789321

9. Yang, H., P. Wang, and Z. Ye, "Robust adaptive beamforming via covariance matrix reconstruction under colored noise," IEEE Signal Processing Letters, Vol. 28, 1759-1763, 2021.
doi:10.1109/LSP.2021.3105930

10. Guerci, J. R., "Theory and application of covariance matrix tapers for robust adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 47, No. 4, 977-985, 1999.
doi:10.1109/78.752596

11. Pajovic, M., J. C. Preisig, and A. B. Baggeroer, "Analysis of optimal diagonal loading for MPDR-based spatial power estimators in the snapshot deficient regime," IEEE Journal of Oceanic Engineering, Vol. 44, No. 2, 451-465, 2018.
doi:10.1109/JOE.2018.2815480

12. Pan, C., J. Benesty, and J. Chen, "Design of directivity patterns with a unique null of maximum multiplicity," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 24, No. 2, 226-235, 2015.
doi:10.1109/TASLP.2015.2504866

13. Ors, B. and R. Suleesathira, "First and second order iterative null broadening beamforming," 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), 47-51, 2019, IEEE.
doi:10.1109/ICISPC.2019.8935850

14. Landon, J., B. D. Jeffs, and K. F. Warnick, "Model-based subspace projection beamforming for deep interference nulling," IEEE Transactions on Signal Processing, Vol. 60, No. 3, 1215-1228, 2011.
doi:10.1109/TSP.2011.2177825

15. Somasundaram, S. D., "Linearly constrained robust Capon beamforming," IEEE Transactions on Signal Processing, Vol. 60, No. 11, 5845-5856, 2012.
doi:10.1109/TSP.2012.2212889

16. Li, S. and X.-P. Zhang, "Dilated arrays: A family of sparse arrays with increased uniform degrees of freedom and reduced mutual coupling on a moving platform," IEEE Transactions on Signal Processing, Vol. 69, 3367-3382, 2021.
doi:10.1109/TSP.2021.3083988

17. Li, J., J. Zhao, Y. Ding, Y. Li, and F. Chen, "An improved co-prime parallel array with conjugate augmentation for 2-D DOA estimation," IEEE Sensors Journal, Vol. 21, No. 20, 23400-23411, 2021.
doi:10.1109/JSEN.2021.3106382

18. Song, J., F. Shen, and J. Shen, "Sparse array design exploiting the augmented conjugate correlation statistics for DOA estimation," IEEE Access, Vol. 8, 41951-41960, 2020.
doi:10.1109/ACCESS.2020.2976570

19. Shaw, A., J. Smith, and A. Hassanien, "MVDR beamformer design by imposing unit circle roots constraints for uniform linear arrays," IEEE Transactions on Signal Processing, Vol. 69, 6116-6130, 2021.
doi:10.1109/TSP.2021.3121630

20. Wax, M. and A. Adler, "Subspace-constrained array response estimation in the presence of model errors," IEEE Transactions on Signal Processing, Vol. 69, 417-427, 2020.

21. Wax, M. and A. Adler, "Detection of the number of signals by signal subspace matching," IEEE Transactions on Signal Processing, Vol. 69, 973-985, 2021.
doi:10.1109/TSP.2021.3053495

22. Zheng, Z., W.-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect," IEEE Transactions on Signal Processing, Vol. 67, No. 7, 1728-1741, 2019.
doi:10.1109/TSP.2019.2897954