Vol. 112
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-25
Spatiotemporal Localized Waves and Accelerating Beams in a Uniformly Moving Dielectric Medium
By
Progress In Electromagnetics Research M, Vol. 112, 55-65, 2022
Abstract
A study is presented of several types of nondiffracting and slowly diffracting spatiotemporally localized waves supported by a simple dielectric medium moving uniformly with speed smaller or larger than the phase speed of light in the rest frame of the medium. The Minkowski material relations are not independent in the case that the speed of motion equals the phase speed of the medium; hence, the electric displacement and magnetic induction vectors cannot be uniquely determined from them. Following, however, a waveguide-theoretic approach, separate equations can be written for the longitudinal and transverse (with respect to the direction of motion) electromagnetic field intensities. The fundamental solutions associated with these equations provide a uniform transition between the cases of ordinary and Čerenkov-Vavilov radiation. The equation satisfied by the longitudinal field components in the absence of sources is examined in detail. In the temporal frequency domain one has an exact parabolic equation which supports accelerating beam solutions. The space-time equation supports several types of nondiffracting and slowly diffracting spatiotemporally localized waves. Comparisons are also made with the acoustic pressure equation in the presence of a uniform flow.
Citation
Ioannis Besieris, "Spatiotemporal Localized Waves and Accelerating Beams in a Uniformly Moving Dielectric Medium," Progress In Electromagnetics Research M, Vol. 112, 55-65, 2022.
doi:10.2528/PIERM22050907
References

1. Minkowski, H., "Die Grundgleichungen fur die electromagnetichen vorhange in bewegten Korpern," Kgl. Ges. Wiss., Vol. 1, 53-116, 1908.

2. Tai, C. T., "The dyadic Green's function in a moving isotropic medium," IEEE Antennas Propag., Vol. 13, 322-323, 1965.
doi:10.1109/TAP.1965.1138414

3. Besieris, I. M. and R. T. Compton, "Time-dependent Green's function for electromagnertic waves in moving conducting media," J. Math. Phys., Vol. 8, 2445-2451, 1967.
doi:10.1063/1.1705178

4. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196

5. Kiselev, A. P., "Modulated Gaussian beams," Radio Phys. Quant. Electron., Vol. 26, 1014-1020, 1983.
doi:10.1007/BF01034667

6. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005

7. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301

8. Lu, J. Y. and J. F. Greenleaf, "Nondiffracting X waves-exact solutions to the free space scalar wave equation and their finite aperture realization," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., Vol. 39, 19-31, 1992.
doi:10.1109/58.166806

9. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realizations of the exact solutions to homogeneous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.
doi:10.1364/JOSAA.10.000075

10. Saari, P. and K. Reivelt, "Evidence of X-shaped propagation-invariant localized light waves," Phys. Rev. Lett., Vol. 79, 4135-4137, 1997.
doi:10.1103/PhysRevLett.79.4135

11. Besieris, I., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental represen- tations of localized pulse solutionsto the scalar wave equation," Progress In Electromagnetics Research, Vol. 19, 1-48, 1998.
doi:10.2528/PIER97072900

12. Salo, J., J. Fagerholm, A. T. Friberg, and M. M. Saloma, "Unified description of X and Y waves," Phys. Rev. E, Vol. 62, 4261, 2000.
doi:10.1103/PhysRevE.62.4261

13. Grunwald, R., V. Kebbel, U. Neumann, A. Kummrow, M. Rini, E. T. Nibbering, M. Piche, G. Rousseau, and M. Fortin, "Generation and characterization of spatially and temporally localized few-cycle optical wave packets," Phys. Rev. A, Vol. 67, 063820 1-5, 2003.
doi:10.1103/PhysRevA.67.063820

14. Saari, P. and K. Reivelt, "Generation and classification of localized waves by Lorentz transformations in Fourier space," Phys. Rev. E, Vol. 68, 036612 1-12, 2004.

15. Longhi, S., "Spatial-temporal Gauss-Laguerre waves in dispersive media," Phys. Rev. E, Vol. 68, 066612 1-6, 2003.
doi:10.1103/PhysRevE.68.066612

16. Conti, C., S. Trillo, P. di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, "Nonlinear electromagnetic X waves," Phys. Rev. Lett., Vol. 90, 170406 1-4, 200.

17. Kiselev, A. P., "Localized light waves: Paraxial and exact solutions of the wave equation (review)," Opt. Spectrosc., Vol. 102, 603-622, 2007.
doi:10.1134/S0030400X07040200

18. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Localized Waves, Wiley- Interscience, Hoboken, NJ, 2008.
doi:10.1002/9780470168981

19. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Non-Diffracting Waves, Wiley-VCH, 2014.

20. Sen Gupta, N. D., "Electrodynamics of moving media and Cerenkov radiation," J. Phys. A (Proc. Phys. Soc.), Vol. 1, 340, 1968.

21. Sancer, M., "Potentials for cylindrical warm plasmas," Radio Sci., Vol. 1, 799, 1966.
doi:10.1002/rds1966191067

22. Siviloglou, G. A. and D. N. Christodoulides, "Accelerating finite-energy Airy beams," Opt. Lett., Vol. 32, 979-981, 2007.
doi:10.1364/OL.32.000979

23. Siviloglou, G. A., J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beams," Phys. Rev. Lett., Vol. 99, 2139011-4, 2007.
doi:10.1103/PhysRevLett.99.213901

24. Saari, P., "Laterally accelerating Airy pulses," Opt. Express, Vol. 16, 10303-10308, 2008.
doi:10.1364/OE.16.010303