Vol. 105
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-21
A Novel DGS-Based Substrate Integrated Coaxial Line Bandpass Filter with Three Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 105, 1-8, 2022
Abstract
A novel high-selectivity bandpass filter based on a defected ground structure and substrate integrated coaxial line is proposed. Three transmission zeros near the passband are achieved by introducing a divergent-shaped resonator and two spindle-shaped defected ground structures, resulting in a high selectivity. To verify the proposed structure, one prototype with a center frequency of 4.94 GHz is designed and fabricated. The measured results show that three transmission zeros respectively located at 3.92, 4.36, and 6.00 GHz are obtained. The 3-dB passband bandwidth is 14.2% from 4.59 to 5.29 GHz. The upper stopband rejection is better than 20 dB from 5.71 to 11.31 GHz.
Citation
Zhongbao Wang, Jian Ma, Shipeng Zhao, Hongmei Liu, and Shao-Jun Fang, "A Novel DGS-Based Substrate Integrated Coaxial Line Bandpass Filter with Three Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 105, 1-8, 2022.
doi:10.2528/PIERL22050801
References

1. Gatti, F., M. Bozzi, L. Perregrini, K. Wu, and R. G. Bosisio, "A novel substrate integrated coaxial line (SICL) for wide-band applications," Eur. Microwave Conf., 1614-1617, Manchester, 2006.
doi:10.1109/EUMC.2006.281409

2. Chu, P., W. Hong, K.Wu, J. Chen, and H. Tang, "A miniaturized bandpass filter implemented with substrate integrated coaxial line," Microw. Opt. Techn. Lett., Vol. 55, No. 1, 131-133, Jan. 2013.
doi:10.1002/mop.27249

3. Lu, Y.-L., G.-L. Dai, C. Hua, G. Xu, and K. Li, "Design of miniaturized substrate integrated coaxial line bandpass filters with quarter-wavelength spiral resonator," Int. J. RF Microwave Comput. Aided Eng., Vol. 26, No. 6, 489-495, Jun. 2016.
doi:10.1002/mmce.20994

4. Chu, P., W. Hong, L. Dai, H. Tang, Z. Hao, J. Chen, and K. Wu, "Wide stopband bandpass filter implemented with spur stepped impedance resonator and substrate integrated coaxial line technology," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 218-220, Apr. 2014.
doi:10.1109/LMWC.2013.2295219

5. Chu, P., L. Guo, L. Zhang, and K. Wu, "Wide stopband bandpass filter implemented by stepped impedance resonator and multiple in-resonator open stubs," IEEE Access, Vol. 7, 140631-140636, Sept. 2019.
doi:10.1109/ACCESS.2019.2943605

6. Sanchez-Soriano, M. A., S. Sirci, J. D. Martinez, and V. E. Boria, "Compact dual-mode substrate integrated waveguide coaxial cavity for bandpass filter design," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 386-388, Jun. 2016.
doi:10.1109/LMWC.2016.2558651

7. He, Z., C. J. You, S. Leng, and X. Li, "Compact inline substrate integrated waveguide filter with enhanced selectivity using new non-resonating node," Electron. Lett., Vol. 52, No. 21, 1778-1780, Oct. 201.
doi:10.1049/el.2016.2712

8. Lu, Y., Y.Wang, T. Liu, B. Yu, and K. Li, "Miniaturized substrate-integrated coaxial line bandpass filter with improved upper stopband," Int. J. Microw. Wirel. Technol., Vol. 9, No. 7, 1441-1445, Sept. 2017.
doi:10.1017/S1759078716001422

9. Woo, D.-J., T.-K. Lee, J.-W. Lee, C.-S. Pyo, and W.-K. Choi, "Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 6, 2840-2847, Jun. 2006.
doi:10.1109/TMTT.2006.875450

10. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 4, 1280-1287, Apr. 2005.
doi:10.1109/TMTT.2005.845750

11. Azizi, S., M. E. Gharbi, S. Ahyoud, and A. Asselman, "Design of bandpass filter for C application with improved selectivity," Mediterr. Congr. Telecommun, 1-4, Fez, Morocco, 2019.

12. Wen, Z.-L., Y.-N Han, X.-Y. Sun, et al. "Design of miniaturized low-pass filter with improved Koch fractal DGS," IEEE Int. Symp. Electromagn. Compat., 1-4, Beijing, China, 2017.

13. Shi, S., W. Choi, W. Che, K. Tam, and Q. Xue, "Ultra-wideband differential bandpass filter with narrow notched band and improved common-mode suppression by DGS," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 185-187, Apr. 2012.
doi:10.1109/LMWC.2012.2187885

14. Hao, Z.-C., W. Hong, J.-X. Chen, X.-P. Chen, and K.Wu, "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 9, 2968-2977, Sept. 2005.
doi:10.1109/TMTT.2005.854232