Vol. 175
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-08-09
Machine Learning-Assisted Sensing Techniques for Integrated Communications and Sensing in WLANs : Current Status and Future Directions (Invited)
By
Progress In Electromagnetics Research, Vol. 175, 45-79, 2022
Abstract
Sensing is a key basis for building an intelligent environment. Using channel state information (CSI) from the IEEE 802.11 physical layer in the wireless local access networks, the CSIbased device-free sensing technique has become very promising to the current sensing solutions because of its non-invasion of privacy, non-contact, easy deployment, and low cost. In recent years, the integrated communication and sensing (ICAS) technology has become one of the popular research topics in both wireless communications and computer areas. Given the fruitful advancements of ICAS, it is essential to review these advancements to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey of CSI-based sensing techniques. This study categorizes the surveyed works into model-based methods, data-based methods, and model-data hybrid-driven methods. Some important physical models and machine learning algorithms are also introduced. The sensing functions are classified into detection, estimation, and recognition according to specific application scenarios. Furthermore, future directions and challenges are discussed.
Citation
Siyuan Shao, Min Fan, Cheng Yu, Yan Li, Xiaodong Xu, and Haiming Wang, "Machine Learning-Assisted Sensing Techniques for Integrated Communications and Sensing in WLANs : Current Status and Future Directions (Invited)," Progress In Electromagnetics Research, Vol. 175, 45-79, 2022.
doi:10.2528/PIER22042903
References

1. You, X. H., C.-X. Wang, J. Huang, X. Q. Gao, Z. C. Zhang, M. Wang, Y. M. Huang, C. Zhang, Y. X. Jiang, J. H. Wang, et al. "Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts," Sci. China --- Inf. Sci., Vol. 64, No. 1, 1-74, 2021.

2. HUAWEI Huawei Wi-Fi 6 (802.11ax) Technology White Paper, 2019.

3. Viswanath, S. K., C. Yuen, W. Tushar, W.-T. Li, C.-K.Wen, K. Hu, C. Chen, and X. Liu, "System design of the internet of things for residential smart grid," IEEE Wirel. Commun., Vol. 23, No. 5, 90-98, 2016.

4. Pokhrel, S. R., H. L. Vu, and A. L. Cricenti, "Adaptive admission control for IoT applications in home WiFi networks," IEEE Trans. Mobile Comput., Vol. 19, No. 12, 2731-2742, 2019.

5. Chen, Q. H. and Y.-H. Zhu, "Scheduling channel access based on target wake time mechanism in 802.11ax WLANs," IEEE Trans. Wireless Commun., Vol. 20, No. 3, 1529-1543, 2020.

6. He, Y., Y. Chen, Y. Hu, and B. Zeng, "WiFi vision: Sensing, recognition, and detection with commodity MIMO-OFDM WiFi," IEEE Internet Things J., Vol. 7, No. 9, 8296-8317, 2020.

7. Paul, B., A. R. Chiriyath, and D. W. Bliss, "Survey of RF communications and sensing convergence research," IEEE Access, Vol. 5, 252-270, 2016.

8. Wang, Z. J., K. K. Jiang, Y. S. Hou, W. W. Dou, C. M. Zhang, Z. H. Huang, and Y. J. Guo, "A survey on human behavior recognition using channel state information," IEEE Access, Vol. 7, 155986-156024, 2019.

9. Ma, Y. S., G. Zhou, and S. Q. Wang, "WiFi sensing with channel state information: A survey," ACM Comput. Surv., Vol. 52, No. 3, 1-36, 2019.

10. Rochim, A. F., B. Harijadi, Y. P. Purbanugraha, S. Fuad, and K. A. Nugroho, "Performance comparison of wireless protocol IEEE 802.11ax vs 802.11ac," Proc. Int. Conf. Smart Technol. Appl. (ICoSTA), 1-5, 2020.

11. Nurchis, M. and B. Bellalta, "Target wake time: Scheduled access in IEEE 802.11ax WLANs," IEEE Wirel. Commun., Vol. 26, No. 2, 142-150, 2019.

12. Deng, D.-J., Y.-P. Lin, X. Yang, J. Zhu, Y.-B. Li, J. Luo, and K.-C. Chen, "IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure," IEEE Commun. Mag., Vol. 55, No. 12, 52-59, 2017.

13. Halperin, D., W. J. Hu, A. Sheth, and D. Wetherall, "Tool release: Gathering 802.11 n traces with channel state information," ACM SIGCOMM Comp. Commun. Rev., Vol. 41, No. 1, 53-53, 2011.

14. Xie, Y. X., Z. J. Li, and M. Li, "Precise power delay profiling with commodity Wi-Fi," IEEE. Trans. Mob. Comput., Vol. 18, No. 6, 1342-1355, 2018.

15. Adib, F. and D. Katabi, "See through walls with Wi-Fi!," Proc. ACM SIGCOMM Conf. SIGCOMM, 75-86, 2013.

16. Wang, F., J. W. Feng, Y. L. Zhao, X. B. Zhang, S. Y. Zhang, and J. S. Han, "Joint activity recognition and indoor localization with Wi-Fi fingerprints," IEEE Access, Vol. 7, 80058-80068, 2019.

17. Adib, F., Z. Kabelac, D. Katabi, and R. C. Miller, "3D tracking via body radio reflections," Proc. NSDI, 317-329, 2014.

18. Cianca, E., D. S. Mauro, and D. D. Simone, "Radios as sensors," IEEE Internet Things J., Vol. 4, No. 2, 363-373, 2016.

19. Adib, F., Z. Kabelac, and D. Katabi, "Multi-person localization via RF body reflections," Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation, 279-292, 2015.

20. Xiong, J., K. Sundaresan, and K. Jamieson, "ToneTrack: Leveraging frequency-agile radios for time-based indoor wireless localization," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 537-548, 2015.

21. Li, X., D. Q. Zhang, Q. Lv, J. Xiong, S. J. Li, Y. Zhang, and H. Mei, "IndoTrack: Device-free indoor human tracking with commodity Wi-Fi," Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 3, 1-22, 2017.

22. Zhang, F. S., D. Q. Zhang, J. Xiong, H. Wang, K. Niu, B. H. Jin, and Y. X. Wang, "From fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 2, No. 1, 53, 2018.

23. Zhang, D. Q., F. S. Zhang, D. Wu, J. Xiong, and K. Niu, "Fresnel zone based theories for contactless sensing," Contactless Hum. Activity Anal., 145-164, 2021.

24. Qialn, K., C. S. Wu, Z. Yang, Y. H. Liu, and K. Jamieson, "Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi," Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 1-10, 2017.

25. Liu, X. F., J. N. Cao, S. J. Tang, and J. Q. Wen, "Wi-Sleep: Contactless sleep monitoring via Wi-Fi signals," Proc. IEEE Real-Time Syst. Symp., 346-355, 2014.

26. Tian, L. P., L. Q. Chen, Z. M. Xu, and Z. Chen, "Wits: An efficient Wi-Fi based indoor positioning and tracking system," Remote Sens., Vol. 14, No. 1, 19, 2022.

27. Bahadori, N., J. Ashdown, and F. Restuccia, "ReWiS: Reliable Wi-Fi sensing through few-shot multi-antenna multi-receiver CSI learning," arXiv preprint arXiv:2201.00869, 2022.

28. Cortes, C. and V. Vapnik, "Support-vector networks," Mach. Learn., Vol. 20, No. 3, 273-297, 1995.

29. Cover, T. and P. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, Vol. 13, No. 1, 21-27, 1967.

30. Quinlan, J. R., "Induction of decision trees," Mach. Learn., Vol. 1, No. 1, 81-106, 1986.

31. Quinlan, J. R., C4. 5: Programs for Machine Learning, Elsevier, 2014.

32. Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Routledge, 2017.

33. Breiman, L., "Random forests," Mach. Learn., Vol. 45, No. 1, 5-32, 2001.

34. Baum, L. E., T. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains," The Annals of Mathematical Statistics, Vol. 41, No. 1, 164-171, 1970.

35. Hinton, G. E. and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, Vol. 313, No. 5786, 504-507, 2006.

36. He, K. M., X. Y. Zhang, S. Q. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 770-778, 2016.

37. LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural Comput., Vol. 1, No. 4, 541-551, 1989.

38. Hopfield, J. J., "Neural networks and physical systems with emergent collective computational abilities," Proc. Natl. Acad. Sci., Vol. 79, No. 8, 2554-2558, 1982.

39. Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural Comput., Vol. 9, No. 8, 1735-1780, 1997.

40. Yang, Y. N., J. N. Cao, X. L. Liu, and X. F. Liu, "Door-monitor: Counting in-and-out visitors with COTS Wi-Fi devices," IEEE Internet Things J., Vol. 7, No. 3, 1704-1717, 2019.

41. Yadav, S. K., S. Sai, A. Gundewar, H. Rathore, K. Tiwari, H. M. Pandey, and M. Mathur, "CSITime: Privacy-preserving human activity recognition using Wi-Fi channel state information," Neural Netw., Vol. 146, 11-21, 2022.

42. Yang, J. F., X. Y. Chen, H. Zou, D. Z. Wang, Q. W. Xu, and L. H. Xie, "EfficientFi: Towards large-scale lightweight Wi-Fi sensing via CSI compression," IEEE Internet Things J., 2022.

43. Shi, Z. G., J. Zhang, R. Y. D. Xu, and Q. Q. Cheng, "Environment-robust device-free human activity recognition with channel-state-information enhancement and one-shot learning," IEEE. Trans. Mob. Comput., Vol. 21, No. 2, 540-554, 2020.

44. Ma, Y. S., G. Zhou, S. Q. Wang, H. Y. Zhao, and W. Jung, "SignFi: Sign language recognition using Wi-Fi," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 2, No. 1, 1-21, 2018.

45. Wang, F. X., W. Gong, and J. C. Liu, "On spatial diversity in Wi-Fi-based human activity recognition: A deep learning-based approach," IEEE Internet Things J., Vol. 6, No. 2, 2035-2047, 2018.

46. Zhou, R., Z. Y. Gong, X. Lu, and Y. Fu, "WiFlowCount: Device-free people flow counting by exploiting Doppler effect in commodity Wi-Fi," IEEE Syst. J., Vol. 14, No. 4, 4919-4930, 2020.

47. Qian, K., C. S. Wu, Z. Yang, Y. H. Liu, and Z. M. Zhou, "PADS: Passive detection of moving targets with dynamic speed using PHY layer information," Proc. IEEE ICPADS, 1-8, 2014.

48. Xiao, J., K. S.Wu, Y. W. Yi, L.Wang, and L. M. Ni, "Pilot: Passive device-free indoor localization using channel state information," Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst. (ICDCS), 236-245, 2013.

49. Zhu, H., F. Xiao, L. J. Sun, R. C. Wang, and P. L. Yang, "R-TTWD: Robust device-free through-the-wall detection of moving human with Wi-Fi," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1090-1103, 2017.

50. Zhang, F., C. Chen, B. B. Wang, H. -Q. Lai, Y. Han, and K. J. R. Liu, "Widetect: A robust and low-complexity wireless motion detector," IEEE ICASSP, 6398-6402, 2018.

51. Zhou, Z. M., Z. Yang, C. S. Wu, L. F. Shangguan, and Y. H. Liu, "Towards omnidirectional passive human detection," Proc. IEEE INFOCOM, 3057-3065, 2013.

52. Wu, C. S., Z. Yang, Z. M. Zhou, X. F. Liu, Y. H. Liu, and J. N. Cao, "Non-invasive detection of moving and stationary human with Wi-Fi," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2329-2342, 2015.

53. Zhang, F., C. Chen, B. B. Wang, and K. J. R. Liu, "WiSpeed: A statistical electromagnetic approach for device-free indoor speed estimation," IEEE Internet Things J., Vol. 5, No. 3, 2163-2177, 2018.

54. Zheng, X. L., J. L. Wang, L. F. Shangguan, Z. M. Zhou, and Y. H. Liu, "Smokey: Ubiquitous smoking detection with commercial Wi-Fi infrastructures," Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), 1-9, 2016.

55. Wu, C. S., Z. Yang, Z. M. Zhou, K. Qian, Y. H. Liu, and M. Y. Liu, "PhaseU: Real-time LOS identification with Wi-Fi," Proc. IEEE INFOCOM, 2038-2046, 2015.

56. Zhou, Z. M., Z. Yang, C. S. Wu, W. Sun, and Y. H. Liu, "LiFi: Line-of-sight identification with WiFi," IEEE INFOCOM, 2688-2696, 2014.

57. Wu, D., D. Q. Zhang, C. R. Xu, Y. S. Wang, and H. Wang, "WiDir: Walking direction estimation using wireless signals," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 351-362, 2016.

58. Xi, W., J. Z. Zhao, X. Y. Li, K. Zhao, S. J. Tang, X. Liu, and Z. P. Jiang, "Electronic frog eye: Counting crowd using Wi-Fi," IEEE INFOCOM 2014, 361-369, 2014.

59. Depatla, S., A. Muralidharan, and Y. Mostofi, "Occupancy estimation using only Wi-Fi power measurements," IEEE J. Sel. Areas Commun., Vol. 33, No. 7, 1381-1393, 2015.

60. Yang, Y. N., J. N. Cao, X. F. Liu, and X. L. Liu, "Wi-Count: Passing people counting with COTS Wi-Fi devices," Proc. 27th Int. Conf. Comput. Commun. Netw. (ICCCN), 1-9, 2018.

61. Qian, K., C. S. Wu, Y. Zhang, G. D. Zhang, Z. Yang, and Y. H. Liu, "Widar2. 0: Passive human tracking with a single Wi-Fi link," Proc. 16th Annu. Int. Conf. Mobile Syst. Appl. Services, 350-361, 2018.

62. Poudel, K. N., D. Schurig, and N. Patwari, "Spatial imaging using a communication system's channel state information," Proc. USNC-URSI Radio Sci. Meeting, 41-42, 2016.

63. Vakalis, S., L. Gong, and N. A. Jeffrey, "Imaging with Wi-Fi," IEEE Access, Vol. 34, 28616-28624, 2019.

64. Wang, X. Y., C. Yang, and S. W. Mao, "PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity Wi-Fi devices," Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 1230-1239, 2017.

65. Zeng, Y. W., D. Wu, J. Xiong, E. Yi, R. Y. Gao, and D. Q. Zhang, "FarSense: Pushing the range limit of Wi-Fi-based respiration sensing with CSI ratio of two antennas," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 3, No. 3, 1-26, 2019.

66. Wang, L., K. Sun, H. P. Dai, W. Wang, K. Huang, A. X. Liu, X. Y. Wang, and Q. Gu, "WiTrace: Centimeter-level passive gesture tracking using OFDM signals," IEEE. Trans. Mob. Comput., Vol. 20, No. 4, 1730-1745, 2019.

67. Sun, L., S. Sen, D. Koutsonikolas, and K.-H. Kim, "Widraw: Enabling hands-free drawing in the air on commodity Wi-Fi devices," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 77-89, 2015.

68. Qian, K., C. S. Wu, Z. M. Zhou, Y. Zheng, Z. Yang, and Y. H. Liu, "Inferring motion direction using commodity wi-fi for interactive exergames," Proc. CHI Conf. Human Factors Comput. Syst. (CHI), 1961-1972, 2017.

69. Wang, Y. X., K. S. Wu, and L. M. Ni, "Wifall: Device-free fall detection by wireless networks," IEEE. Trans. Mob. Comput., Vol. 16, No. 2, 581-594, 2016.

70. Simone, D. D., D. S. Mauro, and C. Ernestina, B. Giuseppe, "A trained-once crowd counting method using differential Wi-Fi channel state information," Proc. 3rd Int. Workshop Phys. Analytics, 37-42, 2016.

71. Liu, S. Q., Y. C. Zhao, and B. Chen, "WiCount: A deep learning approach for crowd counting using Wi-Fi signals," Proc. IEEE Int. Symp. Parallel Distrib. Process. Appl. IEEE Int. Conf. Ubiquitous Comput. Commun. (ISPA/IUCC), 967-974, 2017.

72. Sharma, A., J. Y. Li, D. Mishra, G. Batista, and A. Seneviratne, "Passive Wi-Fi CSI sensing based machine learning framework for COVID-Safe occupancy monitoring," IEEE ICC, 1-6, 2021.

73. Gao, Q. H., J. Wang, X. R. Ma, X. Y. Feng, and H. Y. Wang, "CSI-based device-free wireless localization and activity recognition using radio image features," IEEE Trans. Veh. Technol., Vol. 66, No. 11, 10346-10356, 2017.

74. Zhao, Z. Z., Z. Y. Lou, R. B.Wang, Q. Y. Li, and X. Xu, "I-WKNN: Fast-speed and high-accuracy WI-FI positioning for intelligent sports stadiums," Comput. Electr. Eng., Vol. 98, 107619, 202.

75. Ali, K., A. X. Liu, W. Wang, and M. Shahzad, "Recognizing keystrokes using Wi-Fi devices," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1175-1190, 2017.

76. Ali, K., A. X. Liu, W. Wang, and M. Shahzad, "Keystroke recognition using Wi-Fi signals," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 90-102, 2015.

77. Zhang, J., B. Wei, W. Hu, and S. S. Kanhere, "Wi-Fi-id: Human identification using Wi-Fi signal," Proc. Int. Conf. Distrib. Comput. Sensor Syst., 75-82, 2016.

78. Xin, T., B. Guo, Z. Wang, M. Y. Li, Z. W. Yu, and X. S. Zhou, "Freesense: Indoor human identification with Wi-Fi signals," Proc. IEEE Global Commun. Conf. (GLOBECOM), 1-7, 2016.

79. Abdelnasser, H., M. Youssef, and K. A. Harras, "Wigest: A ubiquitous Wi-Fi-based gesture recognition system," Proc. IEEE Conf. Comput. Commun. (INFOCOM), 1472-1480, 2015.

80. Melgarejo, P., X. Y. Zhang, P. Ramanathan, and D. Chu, "Leveraging directional antenna capabilities for fine-grained gesture recognition," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 541-551, 2014.

81. He, W. F., K. S. Wu, Y. P. Zou, and Z. Ming, "WiG: WiFi-based gesture recognition system," 24th Int. Conf. on Computer Commun. and Networks (ICCCN), 1-7, 2015.

82. Wang, W., A. X. Liu, M. Shahzad, K. Ling, and S. L. Lu, "Device-free human activity recognition using commercial Wi-Fi devices," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1118-1131, 2017.

83. Arshad, S., C. H. Feng, Y. H. Liu, Y. P. Hu, R. Y. Yu, S. W. Zhou, and H. Li, "Wi-chase: A Wi-Fi based human activity recognition system for sensorless environments," Proc. IEEE 18th Int. Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), 1-6, 2017.

84. Wang, Y., J. Liu, Y. Y. Chen, M. Gruteser, J. Yang, and H. B. Liu, "E-eyes: Device-free location-oriented activity identification using fine-grained Wi-Fi signatures," Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 617-628, 2014.

85. Chen, Z. H., L. Zhang, C. Y. Jiang, Z. G. Cao, and W. Cui, "Wi-Fi CSI based passive human activity recognition using attention based BLSTM," IEEE. Trans. Mob. Comput., Vol. 18, No. 11, 2714-2724, 2018.

86. Yan, H., Y. Zhang, Y. J. Wang, and K. L. Xu, "WiAct: A passive Wi-Fi-based human activity recognition system," IEEE Sens. J., Vol. 20, No. 1, 296-305, 2019.

87. Yousefi, S., H. Narui, S. Dayal, S. Ermon, and S. Valaee, "A survey on behavior recognition using Wi-Fi channel state information," IEEE Commun. Mag., Vol. 55, No. 10, 98-104, 2017.

88. Li, H. J., X. He, X. K. Chen, Y. Y. Fang, and Q. Fang, "Wi-Motion: A robust human activity recognition using Wi-Fi signals," IEEE Access, Vol. 7, 153287-153299, 2019.

89. Xiao, F., J. Chen, X. H. Xie, L. Q. Gui, L. J. Sun, and R. C. Wang, "SEARE: A system for exercise activity recognition and quality evaluation based on green sensing," IEEE Trans. Emerg. Top. Comput., Vol. 8, No. 3, 752-761, 2018.

90. Wang, W., A. X. Liu, M. Shahzad, K. Ling, and S. L. Lu, "Understanding and modeling of Wi-Fi signal based human activity recognition," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 65-76, 2015.

91. Hu, Y. Q., F. Zhang, C. S. Wu, B. B. Wang, and K. J. R. Liu, "DeFall: Environment-independent passive fall detection using Wi-Fi," IEEE Internet Things J., Vol. 9, No. 11, 8515-8530, 2021.

92. Wang, H., D. Q. Zhang, Y. S. Wang, J. Y. Ma, Y. X. Wang, and S. J. Li, "RT-Fall: A real-time and contactless fall detection system with commodity Wi-Fi devices," IEEE. Trans. Mob. Comput., Vol. 16, No. 2, 511-526, 2016.

93. Chen, C., Y. Han, Y. Chen, H. Q. Lai, F. Zhang, B. B. Wang, and K. J. R. Liu, "TR-BREATH: Time-reversal breathing rate estimation and detection," IEEE Trans. Biomed. Eng., Vol. 65, No. 3, 489-501, 2017.

94. Guo, X. N., B. Liu, C. Shi, H. B. Liu, Y. Y. Chen, and M. C. Chuah, "Wi-Fi-enabled smart human dynamics monitoring," Proc. 15th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 1-13, 2017.

95. Feng, C. H., S. Arshad, and Y. H. Liu, "Mais: Multiple activity identification system using channel state information of Wi-Fi signals," Proc. 12th Int. Conf. Wireless Algorithms Syst. Appl. (WASA), 419-432, 2017.

96. Liu, X. F., J. N. Cao, S. J. Tang, J. Q. Wen, and P. Guo, "Contactless respiration monitoring via off-the-shelf Wi-Fi devices," IEEE. Trans. Mob. Comput., Vol. 15, No. 10, 2466-2479, 2015.

97. Zeng, Y. Z., P. H. Pathak, and P. Mohapatra, "WiWho: Wi-Fi-based person identification in smart spaces," Proc. 15th Int. Conf. Inf. Process. Sensor Netw., 1-12, 2016.

98. Wang, W., A. X. Liu, and M. Shahzad, "Gait recognition using Wi-Fi signals," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. (UbiComp), 363-373, 2016.

99. Gu, Y., X. Zhang, Z. Liu, and F. J. Ren, "BeSense: Leveraging Wi-Fi channel data and computational intelligence for behavior analysis," IEEE Comput. Intell. Mag., Vol. 14, No. 4, 31-41, 2019.

100. Tan, S. and J. Yang, "Wi-Finger: Leveraging commodity Wi-Fi for fine-grained finger gesture recognition," Proc. 17th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 201-210, 2016.

101. Li, H., W. Yang, J. X. Wang, Y. Xu, and L. S. Huang, "Wi-Finger: Talk to your smart devices with finger-grained gesture," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 250-261, 2016.

102. Wang, G. H., Y. P. Zou, Z. M. Zhou, K. S. Wu, and L. M. Ni, "We can hear you with Wi-Fi!," IEEE. Trans. Mob. Comput., Vol. 15, No. 11, 2907-2920, 2016.

103. Li, S. J., X. Li, Q. Lv, G. Y. Tian, and D. Q. Zhang, "Wi-Fit: Ubiquitous bodyweight exercise monitoring with commodity wi-fi devices," Proc. IEEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big Data Comput., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 530-537, 201.

104. Wright, J., A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 31, No. 2, 210-227, 2009.

105. Rao, B. D. and K. V. S. Hari, "Performance analysis of Root-Music," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, No. 12, 1939-1949, 1989.

106. Hyvärinen, A. and E. Oja, "Independent component analysis: Algorithms and applications," Neural Netw., Vol. 13, No. 4-5, 411-430, 2000.

107. Miyazaki, M., S. Ishida, A. Fukuda, T. Murakami, and S. Otsuki, "Initial attempt on outdoor human detection using IEEE 802.11ac WLAN signal," Proc. IEEE Sensors Appl. Symp. (SAS), 1-6, 2019.

108. Takahashi, R., S. Ishida, A. Fukuda, T. Murakami, and S. Otsuki, "DNN-based outdoor NLOS human detection using IEEE 802.11ac WLAN signal," Proc. IEEE Sensors, 1-4, 2019.

109. Geng, C. H., X. Yuan, and H. Huang, "Exploiting channel correlations for NLOS ToA localization with multivariate Gaussian mixture models," IEEE Wirel. Commun. Lett., Vol. 9, No. 1, 70-73, 2020.

110. He, J. H. M., S. Terashima, H. Yamada, and S. Kidera, "Diffraction signal-based human recognition in Non-Line-of-Sight (NLOS) situation for millimeter wave radar," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., Vol. 14, 4370-4380, 2021.

111. Wei, J. S., S. J. Wei, X. Y. Liu, M. Wang, J. Shi, and X. L. Zhang, "Non-Line-Of-Sight imaging by millimeter wave radar," Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2983-2986, 2021.

112. Huang, B. Q., G. Q. Mao, Y. Qin, and Y. Wei, "Pedestrian flow estimaton through passive wifi sensing," IEEE. Trans. Mob. Comput., Vol. 20, No. 4, 1529-1542, 2019.

113. Trivedi, A., C. Zakaria, R. Balan, A. Becker, G. Corey, and P. Shenoy, "Wifitrace: Network-based contact tracing for infectious diseases using passive wifi sensing," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, No. 1, 1-26, 2021.

114. Mammen, P. M., C. Zakaria, T. Molom-Ochir, A. Trivedi, P. Shenoy, and R. Balan, "WiSleep: Scalable sleep monitoring and analytics using passive WiFi sensing," arXiv preprint arXiv:2102.03690, 2021.

115. Huang, Y. X., Q. Luo, S. Y. Ma, S. Hu, and Y. Gao, "Constant envelope OFDM RadCom system," Proceedings of the International Conference on Communications, Signal Processing, and Systems, 896-904, 2017.

116. Shi, C. G., F. Wang, M. Sellathurai, J. J. Zhou, and S. Salous, "Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence," IEEE Trans. Signal Process., Vol. 66, No. 5, 1316-1330, 2018.

117. Keskin, M. F., V. Koivunen, and H. Wymeersch, "Limited feedforward waveform design for OFDM dual-functional radar-communications," IEEE Trans. Signal Process., Vol. 69, 2955-2970, 2021.

118. Kumbul, U., N. Petrov, F. van der Zwan, C. S. Vaucher, and A. Yarovoy, "Experimental investigation of phase coded FMCW for sensing and communications," 15 th European Conference on Antennas and Propagation (EuCAP), 1-5, 2021.

119. Uysal, F., "Phase-coded FMCW automotive radar: System design and interference mitigation," IEEE Trans. Veh. Technol., Vol. 69, No. 1, 270-281, 2020.

120. McCormick, P. M., C. Sahin, S. D. Blunt, and J. G. Metcalf, "FMCW implementation of Phase-Attached Radar-Communications (PARC)," IEEE Radar Conference (RadarConf), 1-6, 2019.

121. Chen, K., H. X. Zhang, Z. Y. Xu, and S. L. Pan, "FMCW lidar with communication capability using phase-diversity coherent detection," Proc. 24th Optoelectron. Commun. Conf. (OECC) Int. Conf. Photon. Switching Comput. (PSC), 1-3, 2019.

122. Barrenechea, P., F. Elferink, and J. Janssen, "FMCW radar with broadband communication capability," Proc. Eur. Radar Conf., 130-133, 2007.

123. Hadani, R., S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, "Orthogonal time frequency space modulation," Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 1-6, 2017.

124. Wei, Z. Q., W. J. Yuan, S. Y. Li, J. H. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, "Orthogonal time-frequency space modulation: A promising next-generation waveform," IEEE Wirel. Commun., Vol. 28, No. 4, 136-144, 2021.

125. Gaudio, L., M. Kobayashi, B. Bissinger, and G. Caire, "Performance analysis of joint radar and communication using OFDM and OTFS," Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 1-6, 2019.

126. Wild, T., V. Braun, and H. Viswanathan, "Joint design of communication and sensing for beyond 5G and 6G systems," IEEE Access, Vol. 9, 30845-30857, 2021.

127. Cui, Y. H., X. J. Jing, and J. S. Mu, "Integrated sensing and communications via 5G NR waveform: Performance analysis," Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 8747-8751, 2022.

128. Liu, F., Y. H. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, "Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond," IEEE J. Sel. Areas Commun., Vol. 40, No. 6, 1728-1767, 2022.

129. Liu, F., W. J. Yuan, C. Masouros, and J. H. Yuan, "Radar-assisted predictive beamforming for vehicular links: Communication served by sensing," IEEE Trans. Wirel. Commun., Vol. 19, No. 11, 7704-7719, 2020.

130. Yuan, W. J., F. Liu, C. Masouros, J. H. Yuan, D. W. K. Ng, and N. González-Prelcic, "Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach," IEEE Trans. Wirel. Commun., Vol. 20, No. 3, 1442-1456, 2021.

131. Liu, C., W. J. Yuan, S. Y. Li, X. M. Liu, H. S. Li, D. W. K. Ng, and Y. H. Li, "Learning-based predictive beamforming for integrated sensing and communication in vehicular networks," IEEE J. Sel. Areas Commun., Vol. 40, No. 8, 2317-2334, 2022.

132. Mu, J. S., Y. Gong, F. P. Zhang, Y. H. Cui, F. Zheng, and X. J. Jing, "Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks," IEEE Commun. Lett., Vol. 25, No. 10, 3301-3304, 2021.

133. Wang, X. Y., Z. S. Fei, J. A. Zhang, and J. X. Huang, "Sensing-assisted secure uplink communications with full-duplex base station," IEEE Commun. Lett., Vol. 26, No. 2, 249-253, 2022.

134. Mei, W. D. and R. Zhang, "UAV-sensing-assisted cellular interference coordination: A cognitive radio approach," IEEE Wirel. Commun. Lett., Vol. 9, No. 6, 799-803, 2020.