Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-30
Abnormal Circularly Polarized Propagation Over Terrain Profile with Gaussian Correlated Roughness
By
Progress In Electromagnetics Research Letters, Vol. 104, 169-177, 2022
Abstract
In application to active microwave remote sensing, the counterwise RL (left-hand circularly polarized transmitting and right-hand circularly polarized receiving) and LR polarized bistatic scattering are generally stronger than the likewise LL and RR ones, respectively. In this paper, we investigate the circularly polarized propagation over terrain profile at 1.575 GHz and 900 MHz in application to wireless communication. Completely different from common sense in remote sensing, however, numerical simulations show that field strengths for likewise polarizations are larger than those for counterwise polarizations. For further verification, circularly polarized bistatic scattering from terrain is also provided, which is consistent with previous conclusion that the counterwise LR polarized one is larger. Physical mechanism of such a contradictory behavior is explicated by local Fresnel reflections, and physical insights are offered for terrain propagation of circular polarizations. It is suggested that the likewise configuration be adopted in wireless communication, although the counterwise is adopted in microwave remote sensing.
Citation
Xueyuan Chen, Peng Xu, Xinguo Ma, Yucheng Yao, and Hui Lv, "Abnormal Circularly Polarized Propagation Over Terrain Profile with Gaussian Correlated Roughness," Progress In Electromagnetics Research Letters, Vol. 104, 169-177, 2022.
doi:10.2528/PIERL22042806
References

1. Ullah, S., C. Ruan, M. S. Sadiq, T. U. Haq, and W. He, "Microstrip system on-chip circular polarized (CP) slotted antenna for THz communication application," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 8, 1029-1038, 2020.
doi:10.1080/09205071.2020.1770130

2. Tejeswee, S. and S. Verma, "Wide band circularly polarized antenna for (5{7 GHz) WLAN/WiMAX/wireless applications," Second Int. Conference on Electronics, Communication and Aerospace Technology (ICECA), 1290-1294, Coimbatore, 2018.

3. Sharif, A., M. A. Imran, J. Ouyang, Q. H. Abbasi, and Y. Yan, "Circular polarized RFID tag antenna design using characteristic mode analysis," Int. Workshop on Antenna Technology (iWAT), 62-64, Miami, FL, USA, 2019.

4. Genovesi, S., F. Costa, F. A. Dicandia, M. Borgese, and G. Manara, "Orientation-insensitive and normalization-free reading chipless RFID system based on circular polarization interrogation," IEEE Trans. Antennas Propagat., Vol. 68, No. 3, 2370-2378, 2020.
doi:10.1109/TAP.2019.2949417

5. Raney, R. K., A. Freeman, and R. L. Jordan, "Improved range ambiguity performance in quad-pol SAR," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 2, 349-356, 2012.
doi:10.1109/TGRS.2011.2121075

6. Pincus, P., M. Preiss, A. S. Goh, and D. Gray, "Polarimetric calibration of circularly polarized synthetic aperture radar data," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 12, 6824-6839, 2017.
doi:10.1109/TGRS.2017.2734924

7. Yang, P.-J., L.-X. Guo, and Q. Wang, "Circularly polarized wave scattering from two-dimensional dielectric rough sea surface," Progress In Electromagnetics Research M, Vol. 44, 119-126, 2015.
doi:10.2528/PIERM15090702

8. Yang, P.-J., R. Wu, X. Ren, Y. Zhang, and Y. Zhao, "Doppler spectrum of scattered wave from two-dimensional time-varying nonlinear sea surfaces under right-hand circularly polarized wave incidence," Progress In Electromagnetics Research B, Vol. 84, 61-77, 2019.
doi:10.2528/PIERB19012001

9. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 2, 951-964, 2000.
doi:10.1109/36.841977

10. Zavorotny, V. U. and A. G. Voronovich, "Bistatic radar scattering from an ocean surface in the small-slope approximation," Proc. IEEE Int. Geosci. Remote Sens. Symp., Vol. 5, 2419-2421, Piscataway, NJ, USA, 1999.

11. Xu, P. and K. S. Chen, "Circularly polarized bistatic scattering from Sastrugi snow surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 14, No. 8, 1398-1402, 2017.
doi:10.1109/LGRS.2017.2714502

12. Xu, P. and L. Tsang, "Propagation over terrain and urban environment using the multilevel UV method and a hybrid UV/SDFMM method," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 336-339, 2004.

13. Johnson, J. T., R. T. Shin, J. C. Edison, L. Tsang, and J. A. Kong, "A method of moments model for VHF propagation," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 115-125, 1997.
doi:10.1109/8.554248

14. Hviid, J. T., J. B. Andersen, J. Toftgard, and J. Bojer, "Terrain-based propagation model for rural area --- An integral equation approach," IEEE Trans. Antennas Propagat., Vol. 43, No. 1, 41-46, 1995.
doi:10.1109/8.366349

15. Brennan, C. and P. J. Cullen, "Application of the fast far-field approximation to the computation of UHF pathloss over irregular terrain," IEEE Trans. Antennas Propagat., Vol. 46, No. 6, 881-890, 1998.
doi:10.1109/8.686777

16. Ayasli, S., "SEKE: A computer model for low altitude radar propagation over irregular terrain," IEEE Trans. Antennas Propagat., Vol. 34, No. 8, 1013-1023, 1986.
doi:10.1109/TAP.1986.1143933

17. Xu, P., K. S. Chen, Y. Liu, J. C. Shi, C. Peng, R. Jiang, and J. Zeng, "Full-wave simulation and analysis of bistatic scattering and polarimetric emissions from double-layered sastrugi surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 1, 292-307, 2017.
doi:10.1109/TGRS.2016.2606323

18. Tsang, L., D. Chen, P. Xu, Q. Li, and V. Jandhyala, "Wave scattering with the UV multilevel partitioning method: 1. Two-dimensional problem of perfect electric conductor surface scattering," Radio Sci., Vol. 39, No. 5, RS5010, 2004.