1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006, https://doi.org/10.1126/science.1125907.
2. Luican, A., G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, "Single-layer behavior and its breakdown in twisted graphene layers," Phys. Rev. Lett., Vol. 106, 126802, 2011, https://doi.org/10.1103/PhysRevLett.106.126802.
3. Veselago, V. G., "The electrodynamics of substances with negative ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968, https://doi.org/10.1070/PU1968v010n04ABEH003699.
4. Tran, M. C., T. T. Nguyen, T. H. Ho, and H. T. Do, "Creating a multiband perfect metamaterial absorber at K frequency band using defects in the structure," J. Electron. Mater., Vol. 46, 413, 2017, http://dx.doi.org/10.1007/s11664-016-4863-0.
5. Wilbert, D. S., M. P. Hokmabadi, P. Kung, and S. M. Kim, "Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 846, 2013, https://doi.org/10.1109/TTHZ.2013.2285311.
6. Khanna, Y. and Y. K. Awasthi, "Ultra-thin wideband polarization-insensitive metasurface absorber for aviation technology," J. Electron. Mater., Vol. 49, 6410-6416, 2020.
7. Carranza, I. E., G. James, G. John, and C. David, "Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 4700508, 2017, 10.1109/JSTQE.2016.2630307.
8. Fatih, O. A., A. Olcay, O. Meliksah, K. Muharrem, A. Oguzhan, U. Emin, and S. Cumali, "Enhancement of image quality by using metamaterial inspired energy harvester," Phys. Lett. A, Vol. 384, No. 1, 126041, 2020, https://doi.org/10.1016/j.physleta.2019.126041.
9. Lei, Z., Y. W. Rui, D. B. Guo, T. W. Hao, M. Qian, Q. C. Xiao, and J. C. Tie, "Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves," Adv. Funct. Mater., Vol. 28, 33, 2018, https://doi.org/10.1002/adfm.201802205.
10. Banerjee, S., P. Dutta, A. K. Jha, P. R. Tripati, A. Srinivasulu, B. Appasani, and C. Ravariu, "A triple band highly sensitive refractive index sensor using terahertz metamaterial perfect absorber," Progress In Electromagnetics Research M, Vol. 107, 13-23, 2022.
11. Appasani, B., "An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021.
12. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015, https://doi.org/10.1063/1.4918289.
13. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 2014, https://doi.org/10.1109/JPHOT.2014.2381633.
14. Ma, J.-J., W. H. Tong, K. Shi, X.-Y. Cao, and B. Gong, "A broadband metamaterial absorber using fractal tree structure," Progress In Electromagnetics Research Letters, Vol. 49, 73-78, 2014.
15. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, 19, 2012, https://doi.org/10.1007/s00339-012-6936-0.
16. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Broadband and wide-angle re ective linear polarization," Appl. Phys. Lett., Vol. 105, 181111, 2014, https://doi.org/10.1063/1.5116149.
17. Tran, S. T. and T. Q. H. Nguyen, "Defect induced co-polarization broadband metamaterial absorber," AIP Advances, Vol. 9, 055321, 2019, https://doi.org/10.1063/1.5097198.
18. He, S. and T. Chen, "Broadband THz absorbers with graphene-based anisotropic metamaterial films," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 757, 2013, Doi: 10.1109/TTHZ.2013.2283370.
19. Liu, X., Q. Zhang, and X. Cui, "Ultra-broadband polarization-independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials," Plasmonics, Vol. 12, No. 4, 1137, 2017, https://doi.org/10.1007/s11468-016-0368-1.
20. Gu, S., B. Su, and X. Zhao, "Planar isotropic broadband metamaterial absorber," J. Appl. Phys., Vol. 114, 163702, 2013, https://doi.org/10.1063/1.4826911.
21. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017, https://doi.org/10.1063/1.4979543.
22. Tang, J., Z. Xiao, K. Xu, X. Ma, and Z. Wang, "Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle," Plasmonics, Vol. 11, No. 5, 1393, 2016, https://doi.org/10.1007/s11468-016-01892.
23. Tran, M. C., H. P. Van, H. H. Tuan, T. T. Nguyen, H. T. Do, X. K. Bui, S. T. Bui, D. T. Le, T. L. Pham, and D. L. Vu, "Broadband microwave coding metamaterial absorbers," Scientific Reports, Vol. 10, 1810, 2020, https://doi.org/10.1038/s41598-020-58774-1.