Vol. 111
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-13
Refractive Index Sensing Performances of a Mid-Infrared Asymmetric MZI Based on Suspended GaAs Waveguides
By
Progress In Electromagnetics Research M, Vol. 111, 173-183, 2022
Abstract
A novel mid-infrared (MIR) biochemistry sensor using two suspended GaAs waveguides based on an asymmetric Mach-Zender Interferometer (MZI) is proposed. The propagation properties and refractive index (RI) sensing performances of MZI are investigated by the finite element method (FEM). The simulation results show that the maximum waveguide sensitivities (Swg) of the TE and TM modes in the suspended GaAs waveguide are ~1.2 and ~1.0. This design of the GaAs waveguide using the suspension structure is to enhance the interaction between the vanishing field and the measured material. The RI sensitivity of the asymmetric MZI structure increases with the length of the sensing arm, which can reach 854.5 nm/RIU with a Q of 208.2 after parameter optimization. The two arms of the MZI are designed as width-asymmetric structures to make the sensor more sensitive to the measured material. The asymmetric MZI sensing structure has high RI sensitivity and compact structure, which provides a feasible scheme for biochemical sensing.
Citation
Fang Wang, Shoudao Ma, Tao Ma, Xu Wang, Kun Yu, and Lei Li, "Refractive Index Sensing Performances of a Mid-Infrared Asymmetric MZI Based on Suspended GaAs Waveguides," Progress In Electromagnetics Research M, Vol. 111, 173-183, 2022.
doi:10.2528/PIERM22033101
References

1. Zhang, D., H. Wei, and S. Krishnaswamy, "3D printing optofluidic Mach-Zehnder interferometer on a fiber tip for refractive index sensing," IEEE Photonics Technology Letters, Vol. 31, No. 21, 1725-1728, 2019.
doi:10.1109/LPT.2019.2943897

2. Dziekan, Z., E. Pitula, N. Kwietniewski, B. Stonio, M. Janik, T. Smiarowski, M. Koba, P. Parzuchowski, J. Niedzilka-Jonsson, and M. Smietana, "Performance of nanoimprinted and nanocoated optical label-free biosensor --- nanocoating properties perspective," Optics and Lasers in Engineering, Vol. 153, 2022.
doi:The server didn't respond in time.

3. Berneschi, S., F. Bettazzi, A. Giannetti, F. Baldini, G. Nunzi Conti, S. Pelli, and I. Palchetti, "Optical whispering gallery mode resonators for label-free detection of water contaminants," TrAC Trends in Analytical Chemistry, Vol. 126, 2020.
doi:

4. Javanshir, S., A. Pourziad, and S. Nikmehr, "Optical temperature sensor with micro ring resonator and graphene to reach high sensitivity," Optik, Vol. 180, 442-446, 2019.

5. Ajad, A. K., M. J. Islam, M. R. Kaysir, and J. Atai, "Highly sensitive bio sensor based on WGM ring resonator for hemoglobin detection in blood samples," Optik, Vol. 226, 2021.

6. Lin, Y., W. Qian, H. Li, H. Ma, and Z. Jin, "Resonant micro optic gyroscope equipped with multi-turn waveguide ring resonator," Optics Communications, Vol. 491, 2021.

7. Roldan-Varona, P., D. Pallares-Aldeiturriaga, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, "All-in-fiber multiscan Mach-Zehnder interferometer assisted by core FBG for simultaneous multi-parameter sensing," Optics & Laser Technology, Vol. 132, 2020.

8. Lotfi, F., N. Sang-Nourpour, and R. Kheradmand, "High-sensitive plasmonic sensor based on Mach-Zehnder interferometer," Optics & Laser Technology, Vol. 137, 2021.

9. Yuan, G., L. Gao, Y. Chen, J. Wang, P. Ren, and Z. Wang, "Efficient optical biochemical sensor with slotted Bragg-grating-based Fabry-Perot resonator structure in silicon-on-insulator platform," Optical and Quantum Electronics, Vol. 47, No. 2, 247-255, 2014.

10. Jiang, Y., C. Shi, and J. Wang, "A hybrid plasmonic terahertz waveguide with ridge structure base on Bulk-Dirac-semimetal," Optics Communications, Vol. 475, 2020.

11. Chang, Y. and Y. Jiang, "Highly sensitive plasmonic sensor based on fano resonance from silver nanoparticle heterodimer array on a thin silver film," Plasmonics, Vol. 9, No. 3, 499-505, 2013.

12. Al Mahmud, R., M. O. Faruque, and R. H. Sagor, "A highly sensitive plasmonic refractive index sensor based on triangular resonator," Optics Communications, Vol. 483, 2021.

13. Wang, Y., W. Chen, P. Wang, S. Dai, J. Li, Y. Li, Q. Fu, T. Dai, H. Yu, and J. Yang, "Ultra-high-power-cofinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide," Sensors and Actuators B: Chemical, Vol. 347, 2021.

14. Heinsalu, S., Y. Isogai, A. Kawano, Y. Matsushima, H. Ishikawa, and K. Utaka, "Proposal and analysis of ultra-high amplitude-sensitive refractive index sensor by thick silicon multi-slot sub-wavelength Bragg grating waveguide," Optics Communications, Vol. 505, 2022.

15. El Shamy, R. S., M. A. Swillam, and D. A. Khalil, "Mid infrared integrated MZI gas sensor using suspended silicon waveguide," Journal of Lightwave Technology, Vol. 37, No. 17, 4394-4400, 2019.

16. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science and Technology, Vol. 24, No. 1, 2013.

17. Chang, Y.-C., P. Wgli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooijb, and H. P. Herziga, "Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip," Lab on a Chip, Vol. 12, No. 17, 2012.

18. Tu, Z., X. Guan, D. Chen, H. Hu, X. Wang, and S. Gao, "2 μm mid-infrared silicon-rich silicon nitride/silicon hybrid nonlinear waveguides," Optics Communications, Vol. 481, 2021.

19. Wang, F., Y. Chen, C. Li, T. Ma, X. Wang, K. Yu, and L. Li, "Ultracompact and broadband mid-infrared polarization beam splitter based on an asymmetric directional coupler consisting of GaAs-CaF2 hybrid plasmonic waveguide and GaAs nanowire," Optics Communications, Vol. 502, 2022.

20. Yu, C., A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, "Mid-IR biosensor: Detection and fingerprinting of pathogens on gold island functionalized chalcogenide films," Analytical Chemistry, Vol. 78, 2500-2506, 2006.

21. Zouache, T. and A. Hocini, "Mid-infrared micro-displacement measurement with a bidimensional silicon photonic crystal," Progress In Electromagnetics Research Letters, Vol. 91, 77-83, 2020.

22. Singh, V., P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, and J. Hu, "Mid-infrared materials and devices on a Si platform for optical sensing," Sci. Technol. Adv. Mater., Vol. 15, No. 1, Feb. 2014.

23. Lee, J.-M., M. K. Kim, and W.-Y. Choi, "Series resistance in uence on performance of waveguide-type germanium photodetectors on silicon," Chinese Optics Letters, Vol. 15, No. 10, 2017.

24. Jiang, L., J. Wu, K. Chen, Y. Zheng, G. Deng, X. Zhang, Z. Li, and K. S. Chiang, "Polymer waveguide Mach-Zehnder interferometer coated with dipolar polycarbonate for on-chip nitroaromatics detection," Sensors and Actuators B: Chemical, Vol. 305, 2020.

25. Wang, J., A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Hofling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, "Gallium arsenide (GaAs) quantum photonic waveguide circuits," Optics Communications, Vol. 327, 49-55, 2014.

26. Yao, F., M. Yang, Y. Chen, X. Zhou, and L. Wang, "Firstprinciples calculations of the electronic, and optical properties of a GaAs/AlAs van der Waals heterostructure," Chemical Physics Letters, Vol. 765, 2021.

27. Chen, C., X. Hou, and J. Si, "Theoretical design of an integrated optical sensor for a standard immunoassay," IEEE Sensors Journal, Vol. 18, No. 13, 5368-5375, 2018.

28. Fan, X., I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta., Vol. 620, No. 1-2, 8-26, Jul. 14, 2008.

29. Hong, J., J. S. Choi, G. Han, J. K. Kang, C. M. Kim, T. S. Kim, and D. S. Yoon, "A Mach-Zehnder interferometer based on silicon oxides for biosensor applications," Anal. Chim. Acta., Vol. 573-574, 97-103, Jul. 28, 2006.

30. Zhang, D., L. Men, and Q. Chen, "Femtosecond laser microfabricated optofluidic Mach-Zehnder interferometer for refractive index sensing," IEEE Journal of Quantum Electronics, Vol. 54, No. 6, 1-7, 2018.

31. Zhang, D., L. Men, and Q. Chen, "Waveguide Mach-Zehnder interferometer for temperature and concentration sensing," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, No. 4, 1-7, 2021.

32. Ma, T., L. Sun, J. Yuan, X. Sang, B. Yan, K. Wang, and C. Yu, "Integrated label-free optical biochemical sensor with a large measurement range based on an angular grating-microring resonator," Appl. Opt., Vol. 55, No. 18, 4784-4790, Jun. 20, 2016.

33. Wen, Y., Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, "High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators," Optics Communications, Vol. 446, 141-146, 2019.

34. Ghosh, S. and B. M. A. Rahman, "Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution," Sensors and Actuators B: Chemical, Vol. 279, 490-502, 2019.

35. Xiang, L. and L. Huang, "High-sensitivity complex refractive index sensor by designing a slot-waveguide side-coupled Fano resonant cavity," Optics Communications, Vol. 475, 2020.

36. Azizi, B., M. A. G. Shabankareh, and A. Farmani, "Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach-Zehnder interferometer," Journal of Computational Electronics, Vol. 20, No. 4, 1599-1610, 2021.

37. Zhang, H., B. Cong, F. Zhang, Y. Qi, and T. Hu, "Simultaneous measurement of refractive index and temperature by Mach-Zehnder cascaded with FBG sensor based on multi-core microfiber," Optics Communications, Vol. 493, 2021.