1. Sun, X.-D., L. Chen, and Z.-B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 55285538, 2013.
doi:10.1109/TIE.2012.2232253
2. Zhu, H.-Q. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, 2020.
doi:10.1109/TIE.2020.2984434
3. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for ywheel energy storage systems," IEEE Pes. General Meeting, Vol. 29, No. 18, 100-105, 2010.
4. Ooshima, M., S. Kitazawa, and A. Chiba, "Design and analyses of a coreless-stator type bearingless motor/generator for clean energy," IEEE INTERMAG 2006, Vol. 34, No. 9, 1360-1367, 2014.
5. Zhi, L., Y.-L. Xu, X.-F. Yang, and , "Generalized inverse multiplicative structure for differential- equation-based hysteresis models," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4182-4189, 2021.
doi:10.1109/TIE.2020.2982106
6. Huang, H.-B., J.-H. Wu, X.-R. Huang, M.-L. Yang, and W.-P. Ding, "A generalized inverse cascade method to identify and optimize vehicle interior noise sources," Journal of Sound and Vibration, Vol. 467, 115062, 2020.
doi:10.1016/j.jsv.2019.115062
7. Sun, X.-D., L. Chen, and H. Jiang, "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 1-1, 2016.
doi:10.1109/TIE.2016.2530040
8. Zhu, H.-Q. and W. Du, "Decoupling control of bearingless permanent magnet synchronous motor based on inverse system using the adaptive neural-fuzzy inference system," Proceedings of the CSEE, Vol. 39, No. 4, 1190-1197, 2019.
9. Zhu, H.-Q. and Z.-W. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Trans., Vol. 101, 2020.
10. Liu, G.-H. and R.-J. Chen, "Model-free adaptive robust control for two motor drive system based on neural network inversion," Proceedings of the CSEE, Vol. 39, No. 3, 868-874, 2019.
11. Cao, F., T. Yang, Y. Li, and S. Tong, "Adaptive neural inverse optimal control for a class of strict feedback stochastic nonlinear systems," 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 432-436, doi: 10.1109/DDCLS.2019.8908901, 2019.
12. Shi, Q. and H. Zhang, "Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets," IEEE Trans. Ind. Electron., Vol. 68, No. 7, 6248-6256, 2020.
doi:10.1109/TIE.2020.2994868
13. Zhao, W.-X., X.-Q. Qiu, and G.-H. Liu, "Internal model control of linear permanent-magnet vernier motor based on support vector machines generalized inverse," Control and Decision, Vol. 31, No. 8, 1419-1423, 2016.
14. Wang, Z.-Q. and X.-L. Huang, "Nonllinear decoupling control for bearingless induction motor based on support vector machines inversion," Transactions of China Electrotechnical Society, Vol. 30, No. 10, 164-170, 2015.
15. Toledo-Pérez, D. C., J. Rodríguez-Reséndiz, R. A. Gómez-Loenzo, and J. C. Jauregui-Correa, "Support vector machine-based EMG signal classification techniques: A review," Appl. Sci., Vol. 9, 4402, 2019.
doi:10.3390/app9204402
16. Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York, NY, 1995.
doi:10.1007/978-1-4757-2440-0
17. Suykens, J.-A.-K. and J. Vandewalle, "Recurrent least squares support vector machines," IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., Vol. 47, No. 7, 1109-1114, 2000.
doi:10.1109/81.855471