Vol. 111
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-19
Decoupling Control on Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Motor Using LS-SVM Generalized Inverse
By
Progress In Electromagnetics Research M, Vol. 111, 65-76, 2022
Abstract
In order to solve the nonlinear couplings among speed and the radial displacement of the outer rotor coreless bearingless permanent magnet synchronous motor (ORC-BPMSM), a decoupling control strategy based on the least square support vector machine (LS-SVM) generalized inverse is proposed. Firstly, the basic structure and working principle of the ORC-BPMSM are introduced, and the mathematical model of torque and suspension forces are established. Secondly, the ORC-BPMSM system is proved reversible by establishing mathematical models and reversibility analysis, then the pseudo-linear subsystems are formed by connecting the generalized inverse system, which is identified by the LS-SVM, with the original system. Furthermore, additional closed-loop controllers are designed to improve the stability and robustness of the pseudolinear subsystems. Finally, the proposed method based on LS-SVM generalized inverse is compared with traditional inverse system method by simulations and experiments. The simulation and experiment results show that the proposed control strategy has good performance of decoupling and stability.
Citation
Zichen Zhang, and Huangqiu Zhu, "Decoupling Control on Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Motor Using LS-SVM Generalized Inverse," Progress In Electromagnetics Research M, Vol. 111, 65-76, 2022.
doi:10.2528/PIERM22032601
References

1. Sun, X.-D., L. Chen, and Z.-B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 55285538, 2013.
doi:10.1109/TIE.2012.2232253

2. Zhu, H.-Q. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, 2020.
doi:10.1109/TIE.2020.2984434

3. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for ywheel energy storage systems," IEEE Pes. General Meeting, Vol. 29, No. 18, 100-105, 2010.

4. Ooshima, M., S. Kitazawa, and A. Chiba, "Design and analyses of a coreless-stator type bearingless motor/generator for clean energy," IEEE INTERMAG 2006, Vol. 34, No. 9, 1360-1367, 2014.

5. Zhi, L., Y.-L. Xu, X.-F. Yang, and , "Generalized inverse multiplicative structure for differential- equation-based hysteresis models," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4182-4189, 2021.
doi:10.1109/TIE.2020.2982106

6. Huang, H.-B., J.-H. Wu, X.-R. Huang, M.-L. Yang, and W.-P. Ding, "A generalized inverse cascade method to identify and optimize vehicle interior noise sources," Journal of Sound and Vibration, Vol. 467, 115062, 2020.
doi:10.1016/j.jsv.2019.115062

7. Sun, X.-D., L. Chen, and H. Jiang, "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 1-1, 2016.
doi:10.1109/TIE.2016.2530040

8. Zhu, H.-Q. and W. Du, "Decoupling control of bearingless permanent magnet synchronous motor based on inverse system using the adaptive neural-fuzzy inference system," Proceedings of the CSEE, Vol. 39, No. 4, 1190-1197, 2019.

9. Zhu, H.-Q. and Z.-W. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Trans., Vol. 101, 2020.

10. Liu, G.-H. and R.-J. Chen, "Model-free adaptive robust control for two motor drive system based on neural network inversion," Proceedings of the CSEE, Vol. 39, No. 3, 868-874, 2019.

11. Cao, F., T. Yang, Y. Li, and S. Tong, "Adaptive neural inverse optimal control for a class of strict feedback stochastic nonlinear systems," 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 432-436, doi: 10.1109/DDCLS.2019.8908901, 2019.

12. Shi, Q. and H. Zhang, "Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets," IEEE Trans. Ind. Electron., Vol. 68, No. 7, 6248-6256, 2020.
doi:10.1109/TIE.2020.2994868

13. Zhao, W.-X., X.-Q. Qiu, and G.-H. Liu, "Internal model control of linear permanent-magnet vernier motor based on support vector machines generalized inverse," Control and Decision, Vol. 31, No. 8, 1419-1423, 2016.

14. Wang, Z.-Q. and X.-L. Huang, "Nonllinear decoupling control for bearingless induction motor based on support vector machines inversion," Transactions of China Electrotechnical Society, Vol. 30, No. 10, 164-170, 2015.

15. Toledo-Pérez, D. C., J. Rodríguez-Reséndiz, R. A. Gómez-Loenzo, and J. C. Jauregui-Correa, "Support vector machine-based EMG signal classification techniques: A review," Appl. Sci., Vol. 9, 4402, 2019.
doi:10.3390/app9204402

16. Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York, NY, 1995.
doi:10.1007/978-1-4757-2440-0

17. Suykens, J.-A.-K. and J. Vandewalle, "Recurrent least squares support vector machines," IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., Vol. 47, No. 7, 1109-1114, 2000.
doi:10.1109/81.855471