Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-20
Miniaturizing Bandpass Filter Based on Half-Mode SIW for Sub-mm 5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 104, 155-160, 2022
Abstract
A miniaturized half-mode substrate-integrated-waveguide (HMSIW) based bandpass filter with defected ground surface (DGS) for sub-5G applications is presented in this research. The novelty in this article is the proposal of an original configuration of an SIW Filter composed of a mix of DGS cells; each couple of C shapes is etched exactly beneath of two cross shapes, which give us long rejection. We have used six periodic cross-shaped slots as DGS in top of the cavity plane for disturbing the current and creating stopband rejection, and we have also used three couples of C-shaped DGS cells in the bottom plane to improve the performances of the proposed filter. This novel bandpass filter is developed on a 1.54 mm-thick FR-4 (with relative permittivity of 4.3 and the tangent loss of 0.025) operating in the band ranging from 3.4 GHz to 3.8 GHz with a bandwidth of 400 MHz and having the size of 13.5 × 38.6 mm2. The proposed HMSIW-based filter is simulated, fabricated, and measured. The measurement results are in decent agreement with the simulation results.
Citation
Nabil Cherif, Mehadji Abri, Sarosh Ahmad, Adnan Ghaffar, Chahira Khial, Fellah Benzerga, Mohammed El Amine Chaib, Hadjira Abri Badaoui, and Bouabdallah Roumeiça, "Miniaturizing Bandpass Filter Based on Half-Mode SIW for Sub-mm 5G Applications," Progress In Electromagnetics Research Letters, Vol. 104, 155-160, 2022.
doi:10.2528/PIERL22032303
References

1. Noura, A., M. Benaissa, M. Abri, H. Badaoui, T. H. Vuong, and J. Tao, "Miniaturized half-mode SIW band-pass filter design integrating dumbbell DGS cells," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1473-1477, Jun. 2019.
doi:10.1002/mop.31779

2. Rabah, M. A., M. Abri, H. Badaoui, J. Tao, and T. H. Vuong, "Compact miniaturized half-mode waveguide/high pass filter design based on SIW technology screens transmit," IEEE C-Band Signals. Microwave and Optical Technology Letters, Vol. 58, No. 2, 414-418, Feb. 2016.
doi:10.1002/mop.29576

3. Cherif, N., M. Abri, F. Benzerga, H. Badaoui, J. Tao, T.-H. Vuong, and S. Ahmad, "Broadband SIW traveling wave antenna array for terahertz applications," Advances in Terahertz Technology and Its Applications, S. Das, N. Anveshkumar, J. Dutta, A. Biswas (eds), 211-219, Springer, Singapore, Oct. 2021.

4. Agrawal, T. and S. Srivastava, "Ku band pattern reconfigurable substrate integrated waveguide leaky wave horn antenna," International Journal of Electronics and Communications, Vol. 87, 70-75, Apr. 2018.
doi:10.1016/j.aeue.2018.01.022

5. Cherif, N., M. Abri, B. Fellah, H. Badaoui, and J. Tao, "A compact wideband DGS bandpass filter based on half mode substrate integrated waveguide technology," International Journal of Microwave and Optical Technology, Vol. 16, No. 2, 142-147, Mar. 2021.

6. Muchhal, N. and S. Srivastava, "Design of wideband comb shape substrate integrated waveguide multimode resonator bandpass filter with high selectivity and improved upper stopband performance," WILEY International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, 1-9, Apr. 2019.

7. Fellah, B. and M. Abri, "Design of antipodal linearly tapered slot antennas (ALTSA) arrays in SIW technology for UWB imaging,".

8. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, No. 1, 1-22, 2017.
doi:10.1155/2017/2018527

9. Fellah, B., N. Cherif, M. Abri, and H. Badaoui, "CSRR-DGS bandpass filter based on half mode substrate integrated waveguide for X-band applications," AEM, Vol. 10, No. 3, 39-42, Nov. 2021.
doi:10.7716/aem.v10i3.1782

10. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 35-42, 2005.
doi:10.1049/ip-map:20040726

11. Nanang, I., T. S. Gunawan, K. S. Santi, P. Teguh, and A. Z. H. Eki, "Design of microstrip hairpin bandpass filter for 2.9 GHz-3.1 GHz S-band radar with defected ground structure," Malaysian Journal of Fundamental and Applied Sciences, Vol. 14, No. 4, 448-455, 2020.

12. Shaman, H., "New S-band bandpass filter (BPF) with wideband passband for wireless communication systems," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 242-244, 2012.
doi:10.1109/LMWC.2012.2190269

13. Weng, M. H., C. Y. Tsai, D. L. Chen, Y. C. Chung, and R. Y. Yang, "A bandpass filter using half mode SIW structure with step impedance resonator," MDPI Electronics, Vol. 10, No. 1, 1-8, 2020.

14. Juan de Dios, R., L. M. V. Felix, A. M. Alejandro, and H. Juan, "Substrate integrated waveguide (SIW) with koch fractal electromagnetic bandgap structures (KFEBG) for bandpass filter design," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 160-162, Mar. 2015.
doi:10.1109/LMWC.2015.2390537