Vol. 105
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-31
Design of an Ultra Compact Antenna for Low Frequency Applications
By
Progress In Electromagnetics Research Letters, Vol. 105, 95-102, 2022
Abstract
An ultra compact antenna for low frequency application is presented. The resonant frequency band of the proposed antenna is centered at 403.5 MHz, employed for medical implant communication service (MICS) band. The proposed antenna is designed and fabricated on a substrate with εr = 4.4, tanδ=0.02 and thickness h = 1.6 mm. The size of the antenna is only 0.04λ0 x 0.022λ0 x 0.002λ0 (29 mm x 16.5 mm x 1.6 mm), making it very compact for low frequency of operation. The antenna is evolved from a CPW transmission line. During the process of evolution of the proposed antenna, dual-composite right left handed (D-CRLH) behavior is confirmed from the dispersion diagram. The equivalent lumped circuit model for the antenna is also developed, and the D-CRLH behavior is also confirmed from the circuit model.
Citation
Basil J. Paul, Shanta Mridula, Anju Pradeep, and Pezholil Mohanan, "Design of an Ultra Compact Antenna for Low Frequency Applications," Progress In Electromagnetics Research Letters, Vol. 105, 95-102, 2022.
doi:10.2528/PIERL22032103
References

1. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

2. Baek, S. and S. Lim, "Miniaturised zeroth-order antenna on spiral slotted ground plane," Electronics Letters, Vol. 45, No. 20, 1012-1014, 2009.
doi:10.1049/el.2009.2117

3. Pradeep, A., S. Mridula, and P. Mohanan, "Metamaterial based all purpose sensor antenna," International Journal on Communications Antenna and Propagation, Vol. 3, No. 3, 181-184, 2013.

4. Li, H.-P., G.-M. Wang, X.-J. Gao, and L. Zhu, "CPW-fed multiband monopole antenna loaded with DCRLH-TL unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1243-1246, 2015.
doi:10.1109/LAWP.2015.2400054

5. Luo, Q., J. R. Pereira, and H. M. Salgado, "Compact printed monopole antenna with chip inductor for WLAN," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 880-883, 2011.
doi:10.1109/LAWP.2011.2166049

6. Kim, T. G. and B. Lee, "Metamaterial based compact zeroth-order resonant antenna," Electronics Letters, Vol. 45, No. 1, 12-13, 2009.
doi:10.1049/el:20092715

7. Jee, E. P. and Y. Jee, "Compact dual-band CPW-fed zeroth-order resonant monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 712-715, 2012.
doi:10.1109/LAWP.2012.2205212

8. Garcia-Miquel, A., S. Curto, N. Vidal, J. M. Lopez-Villegas, F. M. Ramos, and P. Prakash, "Multilayered broadband antenna for compact embedded implantable medical devices: Design and characterization," Progress In Electromagnetics Research, Vol. 159, 1-13, 2017.
doi:10.2528/PIER16121507

9. Choudhary, D. K., M. A. Abdalla, and R. K. Chaudhary, "Compact D-CRLH resonator for low-pass filter with wide rejection band, high roll-off, and transmission zeros," International Journal of Microwave and Wireless Technologies, Vol. 11, 509-516, 2018.

10. Yamac, Y. E. and S. C. Basaran, "A compact dual band implantable antenna based on split-ring resonators with meander line slots," American Journal of Engineering Research, Vol. 5, No. 12, 255-258, 2016.

11. Li, R., B. Li, G. Du, X. Sun, and H. Sun, "A compact broadband antenna with dual-resonance for implantable devices," Micromachines, Vol. 10, No. 1, 59, 2019.
doi:10.3390/mi10010059

12. Abdalla, M. A. and A. Fouad, "Integrated filtering antenna based on D-CRLH transmission lines for ultra-compact wireless applications," Progress In Electromagnetics Research C, Vol. 66, 29-38, 2016.
doi:10.2528/PIERC16050807

13. Palandoken, M., "Compatible bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications," Radioengineering, Vol. 26, No. 4, 917-923, 2017.
doi:10.13164/re.2017.0917

14. Eldamak, A. R., K. M. Ibrahim, and M. Elkattan, "Implementation of printed small size dual frequency antenna in MHz range," International Journal of Electronics and Telecommunications, Vol. 65, No. 4, 565-570, 2019.

15. Yang, F., L. Zhaonan, Q. Lin, S. Wanting, and L. Gaosheng, "A compact and miniaturized implantable antenna for ISM band in wireless cardiac pacemaker system," Scientific Reports, Vol. 12, 238, 2022.

16. Eisenstadt, W. R. and Y. Eo, "S-parameter-based IC interconnect transmission line characterization," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 4, 483-490, 1992.
doi:10.1109/33.159877

17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

18. Caloz, C., "Dual composite right left handed (D-CRLH) transmission line metamaterial," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 585-587, 2006.
doi:10.1109/LMWC.2006.884773

19. Ryu, Y.-H., J.-H. Park, J.-H. Lee, J.-Y. Kim, and H.-S. Tae, "DGS dual composite right/left handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 434-436, 2008.
doi:10.1109/LMWC.2008.924909

20. Lu, K., G.-M. Wang, and B. Tian, "Design of dual-band branch-line coupler based on shunt open-circuit DCRLH cells," Radioengineering, Vol. 22, No. 2, 618-623, 2013.

21. Paul, B. J., S. Mridula, B. Paul, and P. Mohanan, "Metamaterial inspired CPW fed compact low-pass filter," Progress In Electromagnetics Research C, Vol. 57, 173-180, 2015.
doi:10.2528/PIERC15032002

22. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd Ed., John Wiley & Sons, 2001.
doi:10.1002/0471221619